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Abstract

We characterize the planar straight line graphs (PSLGs) that can be augmented to 3-connected and
3-edge-connected PSLGs, respectively. We show that if a PSLG with n vertices can be augmented to a
3-edge-connected PSLG, then at most 2n − 2 new edges are always sufficient and sometimes necessary
for the augmentation. If the input PSLG is, in addition, already 2-edge-connected, then n− 2 new edges
are always sufficient and sometimes necessary for the augmentation to a 3-edge-connected PSLG.

1 Introduction

Connectivity augmentation is a classical problem in graph theory with application in network design. Given
a graph G(V,E), with vertex set V and edge set E, and a constant k ∈ N, find a minimum set E′ of new
edges such that G′(V,E ∪ E′) is k-connected (respectively, k-edge-connected). Eswaran and Tarjan [4]
and Plesnı́k [29] showed independently that the 2-edge-connectivity augmentation problem can be solved
in linear time. They also gave a polynomial time solution for the 2-connectivity problem, which was later
improved to linear time [34, 15, 16]. Watanabe and Nakamura [40] proved that the edge-connectivity aug-
mentation problem can be solved in polynomial time for every k ∈ N. The runtime was later improved
(using the edge-splitting technique of Lovász [22] and Mader [23]) by Frank [6] and by Nagamochi and
Ibaraki [26]. Jackson and Jordán [17] proved that the vertex-connectivity augmentation problem can be
solved in polynomial time for every k ∈ N. Very recently, Végh [39] gave a polynomial time algorithm for
the k-connectivity augmentation of a (k − 1)-connected graph for any k (where k is part of the input). For
related problems, refer to surveys by Nagamochi and Ibaraki [27], and by Kortsarz and Nutov [20].

The results on connectivity augmentation of abstract graphs do not apply if the input is given with a
planar embedding which has to be respected by the new edges (e.g., in case of physical communication or
transportation networks). A planar straight line graph (PSLG) is a graph G = (V,E), where V is a set
of distinct points in the plane, and E is a set of straight line segments between the points in V such that
two segments may intersect at their endpoints only. Given a PSLG G = (V,E) and an integer k ∈ N, the
embedding preserving k-connectivity (resp., k-edge-connectivity) augmentation problem asks for a set of
new edges E′ of minimal cardinality such that G = (V,E ∪E′) is a k-connected (resp., k-edge-connected)
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PSLG. Since no planar graph is 6-connected or 6-edge-connected, the embedding preserving k-connectivity
(k-edge-connectivity) augmentation problems make sense for 1 ≤ k ≤ 5 only.

Rutter and Wolff [35] showed that both the embedding preserving vertex- and edge-connectivity aug-
mentation problems are NP-hard for k = 2, . . . , 5. They reduce PLANAR3SAT to a decision problem
whether a PSLG with 2m vertices of degree k − 1 can be augmented to a k-edge-connected PSLG with at
most m new edges. The preservation of the input embedding imposes a severe restriction: for example, a
path (as an abstract graph) can be augmented to a 2-connected graph by adding one new edge—however if
a path is embedded as a “zig-zag” path with n vertices in convex position, then it takes n− 2 (resp., ⌊n/2⌋)
new edges to augment it to a 2-connected (resp., 2-edge-connected) PSLG [1]. If the vertices of a PSLG G
are in convex position, then it cannot be augmented to a 3-connected (resp., 3-edge-connected) PSLG, since
any maximal augmentation (which is a triangulation) on n ≥ 3 vertices in convex position has a vertex of
degree 2.

In this paper, we approach the connectivity augmentation for PSLGs from an extremal combinatorial
perspective, and determine the minimum number of new edges sufficient for augmenting any PSLG on n
vertices. One of our main results states that if an arbitrary PSLG on n vertices can be augmented to a 3-
edge-connected PSLG, then at most 2n−2 new edges are always sufficient and sometimes necessary for the
augmentation.

A few previous combinatorial bounds are known on the minimum number of new edges sufficient for the
embedding preserving augmentation of PSLGs. It is easy to see that every PSLG with n ≥ 2 vertices and p
connected components can be augmented to a connected PSLG by adding at most p− 1 ≤ n− 1 new edges.
It is also known that every connected PSLG G with n ≥ 3 vertices and b ≥ 2 distinct 2-connected blocks
can be augmented to a 2-connected PSLG by adding at most b− 1 ≤ n− 2 new edges [1]. Every connected
PSLG with n ≥ 3 vertices can be augmented to a 2-edge-connected PSLG by adding at most ⌊(2n − 2)/3⌋
new edges [37]. These bounds are tight in the worst case [1].

Results of Garcı́a et al. [8] imply that every empty PSLG on n vertices in general position can be aug-
mented to a 3-edge-connected PSLG with at most 2n− 2 (new) edges, and this bound is tight.

Results. We characterize PSLGs that can be augmented to 3-connected or 3-edge-connected PSLGs, re-
spectively. We say that a PSLG is 3-augmentable (resp., 3-edge-augmentable) if it admits an embedding
preserving augmentation to a 3-connected (resp., 3-edge-connected) PSLG. We show the following (Sec-
tion 2):

• A PSLG G = (V,E) is 3-augmentable if and only if V is not in weakly convex position and E does
not contain a chord of the convex hull of V ;

• a PSLG G = (V,E) is 3-edge-augmentable if and only if V is not in weakly convex position and there
is no edge e ∈ E such that the endpoints of e and all vertices on one side of e lie on the boundary of
the convex hull of V .

We also give worst-case tight bounds on the minimum number of new edges that have to be added to a
3-edge-augmentable PSLG to obtain a 3-edge-connected PSLG. We prove the following:

• Every 3-edge-augmentable 2-edge-connected PSLG on n vertices can be augmented to a 3-edge-
connected PSLG with at most n− 2 new edges, and this bound cannot be improved (Theorem 1);

• every 3-edge-augmentable PSLG with n vertices can be augmented to 3-edge-connected PSLG with
at most 2n− 2 new edges, and this bound cannot be improved (Theorem 2).
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In both cases, we provide explicit algorithms for constructing the augmentation. If the input PSLG with n
vertices is already 2-edge-connected, then our augmentation algorithm runs in O(nα(n)) time, where α(n)
is the inverse Ackermann function. For an arbitrary 3-edge-augmentable PSLG with n vertices in general
position, the augmentation algorithm runs in O(n log2 n) time. Both runtimes are in the real RAM model
of computation (Section 7).

Remarks. A few remarks are in order. For abstract graphs (with no planar embedding), it is easy to deduce
worst-case bounds on the number of new edges necessary to augment the vertex- or edge-connectivity to
three. The empty graph with n ≥ 3 vertices can be augmented to a Hamiltonian circuit with n new edges.
A Hamiltonian circuit on n ≥ 4 vertices can be augmented to a 3-connected graph with ⌈n/2⌉ additional
edges (by connecting opposite vertices along the circuit). So the empty graph with n ≥ 4 vertices can be
augmented to a 3-connected (hence 3-edge-connected) graph with ⌈3n/2⌉ edges. This bound is best possible
since the degree of every vertex is at least 3 in a 3-edge-connected (or 3-connected) graph. It follows that
every graph G with n ≥ 4 vertices can be augmented to a 3-connected graph by adding at most ⌈3n/2⌉ new
edges (since we can superimpose G with the above graph constructed on the empty graph), and this bound
is worst-case optimal.

In connectivity augmentation for abstract graphs, it is a common technique to augment a j-edge-connec-
ted graph to a k-edge-connected graph in k − j stages, where each stage raises the edge-connectivity by
one [3, 39]. However, our worst-case bound on PSLGs does not follow from a combination of worst case
bounds for augmenting the edge-connectivity by one. In the worst case, we need n − 1 new edges to
augment the (edge-) connectivity of a PSLG to 1 (which is tight for the empty graph); we need ⌊(2n− 2)/3⌋
new edges to augment the edge-connectivity from 1 to 2 [1]; and we need n − 2 new edges to augment
the edge-connectivity from 2 to 3 (Section 3 below). The naı̈ve combination of the worst-case bounds
shows that a PSLG on n ≥ 4 vertices can be augmented to a 3-edge-connected PSLG by adding at most
(n− 1) + ⌊(2n− 2)/3⌋+ (n− 2) = ⌊(8n− 11)/3⌋ new edge. We prove, however, that 2n− 2 new edges
are always sufficient and sometimes necessary.

Related work. An augmentation is planarity preserving if both G and G′ are planar (i.e., do not contain
K5 or K3,3 as a minor). A given planar graph cannot be augmented to become a k-connected planar graph
for an arbitrarily large k ∈ N. In particular, planarity preserving augmentation problems do not make sense
for k > 5, since no planar graph is 6-connected or 6-edge-connected. Kant and Bodlaender [19] showed that
the planarity preserving vertex-connectivity augmentation problem is NP-complete already for k = 2. Fiala
and Mutzel [5] presented an approximation algorithm in O(n3) time for k = 2, the approximation ratio has
recently been proved to be 2 [13]. Kant and Bodlaender [19] proposed a 5

4 -approximation in O(n3) time for
k = 3. Linear time algorithms for the planarity preserving versions are known for the case that k = 2 and
the input G is an outerplanar graph [18, 25]; and for the version of the problem where both the input G and
the output G′ are required to be outerplanar [9].

2 Which graphs can be augmented?

In this section we study 3-connected and 3-edge-connected triangulations, and then we characterize the
PSLGs that admit embedding preserving augmentations to 3-connected and 3-edge-connected straight line
triangulations, respectively.

For a set V of points in the plane (e.g., a vertex set of a PSLG), let ch(V ) denote the boundary of the
convex hull of V . If the points in V are not all collinear, then ch(V ) is a simple polygon. For a PSLG G we
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use the shorthand notation ch(G) := ch(V (G)). The point set V is in weakly convex position if all points in
V lie on ch(V ) (but there may be three or more collinear points along ch(V )). A chord of ch(G) is an edge
such that its endpoints lie on ch(G), and its relative interior lies in the interior of ch(G). A triangulation of
a point set V in the plane is a connected PSLG on the vertex set V such that all bounded faces are triangles
and the unbounded face is the complement of ch(V ). If V is a set of n non-collinear points, k of which lie
in the interior of ch(V ), then every triangulation of V has exactly n+ k − 2 bounded triangular faces. It is
well known that every PSLG can be augmented to a triangulation.

Proposition 2.1 Let T be a triangulation on n ≥ 4 non-collinear vertices. Then

• T is 3-connected if and only if no edge of T is a chord of ch(T );

• T is 3-edge-connected if and only if no bounded face of T has two edges along ch(T ).

Proof. If an edge e ∈ E(T ) is a chord of ch(T ), then the removal of the two endpoints of e disconnects T .
Assume now that no edge e ∈ E(T ) is a chord of ch(T ). We show that T is 3-connected, that is, it remains
connected after the removal of any two vertices (and all incident edges). Consider two arbitrary vertices
u, v ∈ V , and suppose w.l.o.g. that segment uv is vertical. From any vertex w ∈ V \ {u, v} on or to the
left (resp., right) of the supporting line of uv, the triangulation T contains an x-monotone path to a leftmost
(resp., rightmost) vertex in V , since all bounded faces are convex. These paths avoid both u and v. Between
every leftmost and every rightmost vertex in V , there are two paths along ch(T ), since not all vertices are
collinear. At least one of these paths avoids both u and v, otherwise uv would be a chord of the convex hull.
Therefore for any two vertices w1, w2 ∈ V \ {u, v}, we can construct a path in T that avoids both u and
v by concatenating paths to a leftmost or a rightmost vertex in V , and connecting them along ch(T ). This
proves that T is 3-connected.

If a bounded face of a triangulation T has two edges along ch(T ), then the removal of these two edges
disconnects T . Assume now that T can be disconnected by removing two edges e, f ∈ E(T ). Then there is
a closed curve γ that separates the components of G \ {e, f} such that γ crosses e and f but no other edges
(and does not pass through any vertex). So γ traverses exactly two faces. These faces share two edges, e and
f . Since no two triangles share two edges, one of the faces is the outer face, and the other face is a triangle.
Since any two edges of a triangle are adjacent, e and f are adjacent along ch(T ). 2

Proposition 2.2 A PSLG G = (V,E) with n ≥ 4 vertices is 3-augmentable if and only if the vertices of G
are not in weakly convex position and no edge of G is a chord of ch(G).

Proof. First we show that if V is in weakly convex position or E contains a chord of ch(G), then G is
not 3-augmentable. Assume, to the contrary, that G admits an embedding preserving augmentation to a
3-connected PSLG G′. Since additional edges can only increase the connectivity, we may assume that G′ is
a triangulation. If V is in weakly convex position, then any triangulation of V contains a vertex of degree
two, so G′ cannot be 3-connected. If G contains a chord of ch(G), then so does G′, which implies that G′

cannot be 3-connected.
Assume now that G = (V,E) is a PSLG such that V is not in weakly convex position and E contains

no chord of ch(G). It is enough to augment G to a 3-connected triangulation T , this already implies that
G is 3-augmentable. By Proposition 2.1, T will be 3-connected if none of its edges is a chord of ch(G).
First augment G with all edges along the convex hull ch(G). Then for every vertex in the interior of ch(G),
greedily add new incident edges as long as they do not cross existing edges. Denote the resulting graph by
G′. Note that no edge of G′ is a chord of ch(G), and every bounded face of G′ is convex. We show that
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every bounded face of G′ is a triangle, and so G′ is the required triangulation. Assume, to the contrary, that
G′ has a convex face F with at least 4 vertices. All vertices of F are on the convex hull of G, otherwise a
vertex of F in the interior of ch(G) could be connected to another vertex of F (thereby decomposing F into
smaller faces). However, the edges of F are not chords, so all edges of F lie along ch(G). Therefore, all
vertices of G′ are incident to F , that is, V (G) is in weakly convex position, contradicting our assumption.
2

Proposition 2.3 A PSLG G with n ≥ 4 vertices is 3-edge-augmentable if and only if the vertices of G are
not in weakly convex position and no edge e of G has both of the following two properties:

(i) e is a chord of ch(G) and
(ii) all vertices of G lying on one side of the supporting line of e lie on ch(G).

Proof. First we show that if V is in weakly convex position or E contains a chord of ch(G) such that all
vertices on one of its sides lie on ch(G), then G is not 3-edge-augmentable. Assume, to the contrary, that G
admits an embedding preserving augmentation to a 3-edge-connected PSLG G′. Since additional edges can
only increase the connectivity, we may assume that G′ is a triangulation. If V is in weakly convex position,
then any triangulation of V contains a vertex of degree two, so G′ cannot be 3-edge-connected. If G contains
a chord uv of ch(G) such that all vertices on one side of uv lie on ch(G), then let V1 be the set of vertices
on this side of uv together with the endpoints u and v. The subgraph of T induced by V1 is a triangulation
T1 on at least three vertices. If |V1| = 3, then the single vertex in V1 \ {u, v} has degree two in both T1 and
G′. If |V1| ≥ 4, then note that every triangulation on at least 4 vertices contains two nonadjacent vertices
of degree two (since the dual graph of the triangulation has at least two leaves). Hence, there is a vertex in
V1 \ {u, v} of degree two in T1. The degree of this node is 2 in G′ as well, since it cannot be connected to
the vertices on the opposite side of uv.

Assume now that G = (V,E) is a PSLG such that V is not in weakly convex position, and E contains
no edge satisfying both (i) and (ii). It is sufficient to augment G to a 3-edge-connected triangulation T in
which no new edge satisfies both (i) and (ii). Such a triangulation T will not have a triangle with two edges
along the convex hull, since the third edge would be a chord such that there is exactly one vertex on one
side, which lies on the convex hull. By Proposition 2.1, T will be 3-edge-connected.

First augment G with all edges along the convex hull ch(G). Then for every vertex in the interior of
ch(G), greedily add new incident edges as long as they do not cross existing edges. Denote the resulting
graph by G′. Note that no edge of G′ is a chord of ch(G), and every bounded face of G′ is convex. If every
bounded face of G′ is a triangle, then G′ is the required triangulation. Consider a convex face F of G′ with
at least 4 vertices. All vertices of F are on the convex hull of G, otherwise a vertex of F in the interior of
ch(G) could be connected to another vertex of F (thereby decomposing F into smaller faces). At least two
edges of F are chords of ch(G), since if no edge of F is a chord then V is in weakly convex position, and
if exactly one edge of F is a chord, then G has a chord satisfying (i) and (ii). Let e and f be two edges of F
that are chords of G. Note that G must have vertices in the interior of ch(G) on the opposite side of e and
f each. Triangulate face F with edges whose supporting lines separate e and f . The new edges are chords
such that there are vertices in the interior of ch(G) on both sides. 2

3 Lower bound constructions

We construct PSLGs with n vertices that are 3-edge-augmentable, but cannot be augmented to a 3-edge-
connected PSLG with fewer than 2n− 2 new edges. We present two families of lower bound constructions.
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First, consider the empty graph with n − 1 vertices in convex position, and one vertex in the interior of the
convex hull, for n ≥ 4 (see Fig. 1, left). The only 3-edge-connected augmentation is a wheel graph with
2n − 2 edges. Second, consider a triangulation with m vertices, 2m − 5 bounded faces and the outer face
with exactly three edges. Put a singleton vertex in each bounded face, and 2 singletons next to each edge
in the outer face as in Fig. 1, right. The only 3-edge-connected augmentation is obtained by adding 3 new
edges at each singleton in a bounded face, and 5 new edges for each pair of singletons next to an edge of the
outer face. A graph with n = m+ (2m− 5) + 6 = 3m+ 1 vertices requires (2m− 5)3 + 3 · 5 = 2n− 2
new edges.

Figure 1: Left: n−1 vertices in convex position and one vertex in the interior of the convex hull. Right: a triangulation
with m = 4 vertices, 2m− 5 = 3 singletons in bounded faces, and 2 singletons next to each edge in the outer face.

If the input graph is already 2-edge-connected, then fewer new edges are enough to obtain a 3-edge-
connected PSLG. We present PSLGs that are 3-edge-augmentable and 2-edge-connected, but cannot be
augmented to a 3-edge-connected PSLG with fewer than n − 2 new edges. Consider a Hamiltonian circuit
on n vertices with n− 1 vertices in convex position and one vertex lying in the interior of the convex hull as
in Fig. 2. This PSLG has a unique embedding preserving augmentation to a 3-edge-connected PSLG, which
is obtained by connecting the vertex in the interior of the convex hull to all n− 3 nonadjacent vertices, and
adding the one missing edge of the convex hull.

Figure 2: Left: A Hamiltonian circuit with n − 1 vertices in convex position and one vertex lying in the interior
of ch(H). Right: The only possible embedding preserving augmentation to a 3-connected (resp., 3-edge-connected)
PSLG.

The same construction provides lower bounds for vertex-connectivity augmentation: There are 3-augmentable
and 2-connected PSLGs that cannot be augmented to a 3-connected PSLG with fewer than n− 2 new edges.
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4 Augmenting the edge-connectivity from two to three

Given a graph G = (V,E), two vertices u, v ∈ V are k-edge-connected if they are connected by at least k
edge-disjoint paths. This defines a binary relation on V , which is an equivalence relation [38]. The equiva-
lence classes are the k-edge-connected components of G. By Menger’s theorem, G is k-edge-connected if
and only if there are k edge-disjoint paths between any two vertices, that is, if V is a single k-edge-connected
component. The vertices in a 1-edge-connected component of G always induce a maximal connected sub-
graph of G, which is called a component of G, for short. Note that the vertices in a k-edge-connected
component do not necessarily induce a connected subgraph of G if k ≥ 3. In K3,2, for instance, there are
three edge-disjoint paths between the two vertices of degree 3, these two vertices form a 3-edge-connected
component, even though they are not adjacent. For a graph G, let λ(G) denote the number of 3-edge-
connected components.

Lemma 4.1 Every 2-edge-connected 3-edge-augmentable PSLG G admits an embedding preserving aug-
mentation to a 3-edge-connected PSLG with at most λ(G)− 1 new edges.

Proof. Since G = (V,E) is 3-edge-augmentable, it can be augmented to a 3-edge-connected PSLG G′ =
(V,E′). Augment G incrementally as follows. For every edge e ∈ E′ \E, increment G with e if it connects
two distinct 3-edge-connected components of the current PSLG. Since G is 2-edge-connected, a new edge
between any two 3-edge-connected components merges those components into one. That is, every new edge
decreases the number of 3-edge-connected components by at least one, so at most λ(G)− 1 new edges are
added. 2

The simple tool introduced in Lemma 4.1 leads to a tight bound for the number of new edges that can
augment a 2-edge-connected PSLG to become 3-edge-connected.

Theorem 1 Every 2-edge-connected 3-edge-augmentable PSLG with n ≥ 4 vertices admits an embedding
preserving augmentation to a 3-edge-connected PSLG by adding at most n − 2 new edges. This bound
cannot be improved.

Proof. Let G be a 2-edge-connected 3-edge-augmentable PSLG with n ≥ 4 vertices. If λ(G) ≤ n− 1, then
Lemma 4.1 completes the proof.

Assume that λ(G) = n. This means that every 3-edge-connected component consists of a single vertex.
Since G is already 2-edge-connected, every edge is part of some circuit. Any two circuits either are disjoint
or share exactly one vertex, since no two vertices are connected by three edge-disjoint paths. It follows that
G is the union of edge-disjoint circuits, and so G is an Eulerian tour. We distinguish two cases.

Case 1. G is Hamiltonian. (Refer to Fig. 3, left) Since G is 3-edge-augmentable, its vertices are not in
weakly convex position, and so there is an edge e of the convex hull ch(G) which is not an edge of G. The
endpoints of e partition the Hamiltonian circuit G into two paths P1 and P2. Since both endpoints of e lie on
ch(G), all internal vertices of one of the paths, say P1, lie in the interior of ch(G). Note that G is a simple
polygon, in which e is an external diagonal. In an arbitrary triangulation of the interior of this polygon, there
is an edge f that connects two internal vertices of paths P1 and P2. Let G′ = G+ {e, f}. The four distinct
endpoints of e and f are in a single 3-edge-connected component of G′. By Lemma 4.1, G′ can be further
augmented to a 3-edge-connected PSLG by adding at most n− 4 new edges. Together with e and f , G has
an embedding preserving augmentation to a 3-edge-connected PSLG with at most n− 2 new edges.
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Figure 3: Left: A Hamiltonian circuit, a new edge e along the convex hull, and another edge f . Right: A non-
Hamiltonian 2-edge-connected PSLG, and a face F whose boundary is not a simple polygon.

Case 2. G is not Hamiltonian. (Refer to Fig. 3, right.) Then G has a face F whose boundary is not
a simple polygon, that is, some vertex v appears twice along the counterclockwise traversal of the edges
incident to F . Vertex v partitions the boundary of F into at least two paths. If F is a bounded face, then in
any triangulation of face F , there is an edge e that connects two internal vertices of two distinct paths. If
F is the outer face, then there is an edge e that connects two internal vertices of two distinct paths. In both
cases, let G′ = G + {e}. Vertex v together with the two endpoints of e form a single 3-edge-connected
component of G′. By Lemma 4.1, G′ can be further augmented to a 3-edge-connected PSLG by adding at
most n−3 new edges. Together with e, G has an embedding preserving augmentation to a 3-edge-connected
PSLG with at most n− 2 new edges.

The upper bound n− 2 is best possible for the lower bound construction given in Fig. 2. 2

5 Preliminaries

In the next section (Section 6), we present an algorithm for augmenting a 3-edge-augmentable PSLG with
n vertices to a 3-edge-connected PSLG with at most 2n − 2 new edges. In this section, we prove a cou-
ple of auxiliary results and introduce notation for the number of bridges, components, reflex vertices, and
singletons. They will play a key role in tracking the number of new edges. We also present a few simple
inequalities used for verifying that at most 2n− 2 edges have been added.

Multi-edges. In the next section we present an algorithm that augments a 3-edge-augmentable PSLG to a
simple 3-edge-connected PSLG. In intermediate steps of our augmentation algorithm, we may use a planar
straight line multi-graph (PSLMG, for short), where the multiplicity of each edge is a positive integer. In
the course of the augmentation algorithm, some new edges may be parallel to original or previously added
edges of the graph. Since every edge is embedded as a straight line segment, parallel edges are represented
by the same line segment. For a PSLMG G, we denote by Ĝ the PSLG obtained by changing the multiplicity
of every edge of G to one. The following proposition allows replacing multi-edges by single edges without
decreasing the edge-connectivity. Abellanas et al. [1, Lemma 4] proved an analogous result for 2-edge-
connected PSLMGs.

Proposition 5.1 Let G be a 3-edge-connected PSLMG such that Ĝ is 3-edge-augmentable, and let e be an
edge of multiplicity at least 2 in G. Then we can obtain a 3-edge-connected PSLMG from G by decrementing
the multiplicity of e by one and adding at most one new edge of multiplicity 1.
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Proof. Decrement the multiplicity of e by one, and denote the resulting PSLMG by G′. If G′ is 3-edge-
connected, then our proof is complete. Suppose that G′ is not 3-edge-connected. Then G′ has a 2-bridge
(possibly an edge of multiplicity 2). Every 2-bridge in G′ must contain e, and an edge can be part of at
most one 2-bridge of G′. It follows that G′ has a unique 2-bridge, which contains e. The deletion of this
2-bridge decomposes G′ into two subgraphs, say G′

1 and G′
2. Since Ĝ is 3-edge-augmentable, it can be

augmented to a 3-edge-connected PSLG G′′. At least three edges of G′′ connect V (G1) and V (G2), one of
which is not present in Ĝ. Denote this edge by f . Now the PSLMG G′ ∪ {f} has no 2-bridge, hence it is
3-edge-connected. 2

Corollary 5.2 If a PSLG G has an embedding preserving augmentation to a 3-edge-connected PSLMG with
m new edges (possibly duplicates), then G has an embedding preserving augmentation to a PSLG with at
most m new (distinct) edges.

Proof. Augment G to PSLMG G′, increasing the total multiplicity by m. Apply Proposition 5.1 successively
while G′ has an edge of multiplicity more than one. We obtain a 3-edge-connected PSLG with all the original
edges of G and at most m additional edges. 2

We also extend Lemma 4.1 to PSLMGs.

Lemma 5.3 Let G be a 2-edge-connected PSLMG such that Ĝ is 3-edge-augmentable. Then G admits an
embedding preserving augmentation to a 3-edge-connected PSLMG with at most λ(G)− 1 new edges.

Proof. Since Ĝ = (V,E) is 3-edge-augmentable, it can be augmented to a 3-edge-connected PSLG G′ =
(V,E′). Augment G incrementally as follows. For every edge e ∈ E′ \E, increment G with e if it connects
two distinct 3-edge-connected components of the current PSLMG. Since G is 2-edge-connected, a new edge
between any two 3-edge-connected components merges those components into one. That is, every new edge
decreases the number of of 3-edge-connected components by at least one, so at most λ(G) − 1 new edges
are added. 2

Notation for bridges, components, and vertices along the convex hull. Consider a PSLG G = (V,E).
A each vertex v ∈ V , the rotation order of the incident edges is the cyclic order in which the edges appear
counterclockwise around v. If two edges e1, e2 ∈ E are adjacent at vertex v ∈ V , and they are consecutive
in the rotation order of V , then they are both adjacent to a common face of G, and determine an angle
∠(e1, e2) of G with apex v. A vertex v ∈ V is reflex if it is the apex of an angle of at least 180◦. For
example, a vertex of degree 1 or 2 is always reflex, but a singleton is not reflex. If a vertex of degree 2
is incident to two collinear edges, we designate one adjacent angle of 180◦ as reflex, and the other one as
convex, arbitrarily. With this convention, every reflex vertex is the apex of a reflex angle in a unique face.

An edge in a graph G is a bridge if the deletion of the edge disconnects one of the connected components
of G. Similarly a pair of edges in a graph G is a 2-bridge (or 2-edge-cut) if the deletion of both edges
disconnects one of the connected components of G.

By Euler’s formula, a PSLG with n vertices has at most 2n − 5 bounded faces. We use a stronger
inequality that includes the number of reflex vertices.

Lemma 5.4 ([36]) Let G be a PSLG with f bounded faces and n vertices, r of which are reflex. Then we
have f + r ≤ 2n− 2.

This bound cannot be improved: it is tight, for example, for triangulations. Applying Lemma 5.4 for each
2-edge-connected component of a PSLG G, independently, we can conclude the following.
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Corollary 5.5 Let G be a PSLG with b bridges, c non-singleton components, f bounded faces, n vertices, r
of which are reflex, and s singletons. Then

b+ c+ f + r + 2s ≤ 2n, (1)

with equality if and only if G is a forest having only reflex vertices.

Proof. Let G0 be the graph obtained from G by removing all bridges. Let b0 = 0, c0, f0, r0, and s0 denote
the corresponding parameters of G0 (e.g., c0 denotes the number of non-singleton connected components of
G0). Applying Lemma 5.4 for each non-singleton component of G0, we have f0 + r0 ≤ 2(n − s0) − 2c0.
After adding 2s0 to both sides, we have f0 + r0 +2s0 ≤ 2n− 2c0, thus b0 + c0 + f0 + r0 +2s0 ≤ 2n− c0.

We now successively add the bridges of G, in an arbitrary order, to G0. Whenever we add a bridge,
the number of components (including both singleton and non-singleton components) decreases by one, the
number of bridges increases by one, and the number of faces remains unchanged. If an endpoint of the
bridge is a singleton, then the singleton becomes a reflex vertex. Hence after adding a bridge, the quantity
b+ c+ f + r + 2s remains the same or decreases (some reflex points may become non-reflex). Therefore,
b+ c+ f + r+2s ≤ 2n, with equality if and only if c0 = 0 (that is G is a forest) and all vertices are reflex.
2

ch(G)

v1

v2

v3

v4

v5

v6

v7

v8

v9

v10

v11

v12

v13

v14

v15

v16

v17

v18

v19

Figure 4: A PSLG G with 19 vertices and 13 edges. We have bh = 1 (bridge v9v18 is on the convex hull), gh = 2
(edges v1v3 and v9v18), rh = 7 (reflex vertices v1, v2, v3, v9, v11, v17 and v18), sh = 2 (singletons v7 and v19), and
ch = 3 (the three components that contain v1, v2 and v17, respectively).

After each step of our augmentation algorithm (in Section 6 below), we will derive an upper bound for
the number of newly added edges in terms of b, c, f , r, and s. Inequality (1) will ensure that altogether at
most 2n− 2 edges are added.

We distinguish two types of bridges, edges, reflex vertices, singletons, and non-singleton components.
(See Fig. 4.) In the input graph G, let bh (resp., gh, rh, and sh) denote the number of bridges (resp., edges,
reflex vertices, and singletons) along the convex hull ch(G). Clearly, we have bh ≤ gh. Let ch be the number
of non-singleton components with at least one vertex lying on the convex hull. Let bi = b− bh, ci = c− ch,
ri = r − rh, and si = s− sh.

Connecting singletons. To raise the edge-connectivity of a PSLG G to 3, the degree of every singleton
has to increase to at least 3. We can charge at most two new edges to each singleton (i.e., the term 2s in
Inequality (1)). We will charge the additional edges at singletons to faces and reflex vertices (i.e., the terms
f+r in Inequality (1)). Every vertex of degree 2 is reflex, and we will charge one new edge per reflex vertex
to the term r in Inequality (1). The greatest challenge in designing our augmentation algorithm is to add r
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new edges at reflex vertices that serve two purposes: they (i) connect each reflex vertex to another vertex
and (ii) connect a possible nearby singleton to the rest of the graph.

Our augmentation algorithm will work in 7 stages. By the end of stage 4 of our algorithm, we obtain
a PSLMG G4 that consists of a 2-edge-connected component and some singletons lying in the interior of
ch(G). Some of the edges of G4, which have been added in stages 1-4, are labeled deformable. These are
not part of the input graph, and so they can be changed. We will compute the following structure in stage 5.

(♡) The interior of ch(G5) is decomposed into pairwise disjoint convex regions, C1, C2, . . . , Cℓ.
For every j = 1, 2, . . . , ℓ, there is a deformable edge ej whose endpoints lie on the boundary of
Cj ; the deformable edges ej are distinct; and the only edge of G5 that may intersect the interior
of Cj is ej .

In every convex region Cj , j = 1, 2, . . . , ℓ, we can replace the deformable edge ej = ujvj by a path
between uj and vj that lies entirely in Cj and passes through all singletons in Cj . The resulting PSLG is
2-edge-connected, and so we can apply Lemma 5.3 to obtain a 3-edge-connected PSLG.

Deformable edges. In stages 1-4 of the algorithm, we maintain a unique deformable edge τ(F ) for each
bounded face F of the current PSLMG. The edge τ(F ) is a new edge added during augmentation and it may
be parallel to an edge of the input PSLG G. In stage 5, we decompose the interior of ch(G) into convex
regions with property (♡), with one deformable edge assigned to each convex region, and in stage 6, each
deformable edge ujvj will be replaced by a path between uj and vj .

In stage 1, we add a deformable edge parallel to an existing edge for every bounded face of G. In stages
2-5, we maintain the deformable edges τ(F ) according to the following rule:

Rule (∗): If a new edge e decomposes a face F into two faces, F1 and F2, we define τ(F1)
and τ(F2) as follows. If F is a bounded face and, w.l.o.g., τ(F ) is adjacent to F1, then let
τ(F1) = τ(F ) and τ(F2) = e. If F is the outer face and, without loss of generality, F1 is a
bounded face (hence F2 is the new outer face), then let τ(F1) = e.

−→r 1

−→r 2

u

Q

−→

b

−→a o

−

−→

b

−
−→a

ℓ

Figure 5: Left: A reflex angular domain ∠(⃗a, b⃗) and its reverse wedge ∠(−b⃗,−a⃗). Right: A convex polygon Q and
two rays. The reverse wedges of the exterior angles at u1, u2, and u3 are disjoint from both rays.
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Reverse wedges. We conclude this section with a technical lemma (Lemma 5.6). A wedge (or angular
domain) ∠(⃗a, b⃗), defined by rays a⃗ and b⃗ emanating from a point o, is the region swept by the ray rotated
about o counterclockwise from position a⃗ to b⃗. Refer to Fig. 5. If the angular domain ∠(⃗a, b⃗) is reflex, we
define its reverse wedge to be ∠(−b⃗,−a⃗).

Lemma 5.6 Let Q be a convex polygon, and let r⃗1 and r⃗2 be two rays emanating from Q. Then Q has a
vertex u such that the reverse wedge of the exterior angle of Q at u is disjoint from the relative interiors of
r⃗1 and r⃗2.

Proof. Consider the two lines tangent to Q and are parallel to r⃗1. At least one of them, say line ℓ, is disjoint
from the relative interior of r⃗2. If exactly one vertex of Q lies on ℓ, then let u be this vertex. Otherwise let
u be the first vertex of Q along the line ℓ, oriented in the same way as r⃗1. 2

6 Augmentation algorithm

Let G = (V,E) be a 3-edge-augmentable PSLG with n ≥ 4 vertices. We augment G to a 3-edge-connected
PSLG with at most 2n − 2 new edges. The seven main stages of our augmentation algorithm are outlined
below. At the end of stage j = 1, 2, . . . , 7, the input G has been augmented to a PSLMG Gj , where G7 is a
3-edge-connected PSLG. For stage j = 2, 3, . . . , 7, we note the key properties of the resulting PSLMG Gj

in brackets.

1. Create a deformable edge for each bounded face.

2. Add all convex hull edges [all hull edges are in a single component].

3. Connect all non-singleton components [one big component and singletons].

4. Eliminate bridges [a big 2-edge-connected component and singletons].

5. Add a new edge at each reflex vertex in the interior of ch(G) [singletons and a big 2-edge-connected
component, where every 3-edge-connected component is incident on the outer face].

6. Connect singletons lying in the interior of ch(G) [a 2-edge-connected PSLMG].

7. Apply Lemma 5.3 [a 3-edge-connected PSLG].

Stage 1. Deformable edges for all bounded faces. For every bounded face F in G, add a deformable
edge τ(F ) parallel to an arbitrary edge in E adjacent to F . We have created f deformable edges, each of
which is parallel to an existing edge of G. We obtain a PSLMG G1.

Stage 2. Convex hull edges. Augment G1 successively with the edges of the convex hull ch(G) if they
are not already present in G1. The number of vertices along the convex hull is rh + sh, and so we have
added rh + sh − gh new edges.

For j = 2, . . . 7, the boundary of the outer face in Gj will be a simple polygon, which we denote by
Pj . Let λh(Gj) denote the number of 3-edge-connected components of Gj that have at least one vertex
incident on Pj . (Recall that λ(G) denotes the total number of 3-edge-connected components of a graph G,
c.f. Section 4). We will use the following lemma in stage 7.

Lemma 6.1 At the end of stage 2, we have λh(G2) ≤ ch + sh + gh.
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Proof. The original PSLG G has ch+ sh components with at least one vertex lying on ch(G). If we remove
all gh convex hull edges from G, the remaining PSLG has at most ch + sh + gh components with at least
one vertex on ch(G). All hull vertices in each of these components are 3-edge-connected in G2. Hence
ch + sh + gh is an upper bound on λh(G2). 2

Stage 3. Connecting non-singleton components. In the rest of the paper, let K always denote the con-
nected component of the current PSLMG that contains the boundary of the outer face. In this stage, we
incrementally add new edges between K and all other non-singleton components, which lie in the interior
ch(G). Repeat the following procedure, which augments G2 with one or two new edges, until K becomes
the only non-singleton component.

Let H denote the disjoint union of all non-singleton components of G2 lying in the interior of ch(G).
Let U denote the set of vertices of ch(H). Refer to Fig. 6. Pick an arbitrary vertex u ∈ U . It is clear that
u is a reflex vertex. The ray emitted from u along the bisector of the reflex angle hits some an edge vw of
K. Let x ∈ uv be the point hit by the ray. Denote by path(u, v) and path(u,w), respectively, the shortest
paths from u to v and to w which are homotopy equivalent to the paths (u, x, v) and (u, x, w) within a face
of K (note that these paths may cross edges of H , which are not part of K).

Gh

H

u

w

v

w1

v1

Gh

H

u

w1 = w

v

v1 u1

Gh

H

u

w1 = w

v

v1 u1

(a) (b) (c)

x

x x

Figure 6: The shortest paths path(u, v) and path(u,w) and edge vw form a pseudo-triangle. (a) The interior of
triangle ∆(u, v1, w1) is disjoint from U . (b) The bisector ray of the reflex angle at u1 hits v1w1. (c) The bisector ray
of the reflex angle at u1 hits uv1

Let v1 and w1 be the vertex of path(u, v) and path(u,w), respectively, adjacent to u (possibly, v1 = v
or w1 = w). If the interior of triangle ∆ = ∆(u, v1, w1) is disjoint from U (Fig. 6(a)), then augment G2

with the edges uv1 and uw1. This decreases the number of non-singleton components by one, and it also
decreases the number of reflex vertices by one because u is no longer reflex.

Suppose now that the interior of triangle ∆ intersects U . Let u1 be the vertex in U ∩ int(∆) closest to
the supporting line of v1w1. Note that the points in U ∩ int(∆) must lie on one side of the ray −→ux, since U
is in convex position and u ∈ U . Assume w.l.o.g. that U ∩ int(∆) and w lie on the same side of −→ux.

If the bisector ray of the reflex angle of u1 crosses v1w1 (Fig. 6(b)), then we augment G2 with the edges
u1v1 and u1w1. These edges are already outside of ch(H). Similarly to the previous case, the number of
non-singleton components drops by one, and the number of reflex vertices also drops by one because u1 is
no longer reflex.

If, however, the bisector ray of the reflex angle of u1 crosses uv1 (Fig. 6(c)), then there are two con-
secutive vertices along ch(H) between u and u1, say u′ and u′′, such that the bisector ray of u′ hits v1w1

and the bisector ray of u′′ hits uv1. In this case, we add three edges u′v1, u′u′′, and u′′v1. The number of
non-singleton components drops by at least one, and the number of reflex vertices drops by two (specifically,
u′ and u′′ are no longer reflex).
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After iterating, the resulting PSLMG G3 has one non-singleton component (which contains all hull edges)
and all singletons lie in some bounded faces. Note also that none of the new edges are bridges. Let r3 denote
the number of reflex vertices of G2 that are no longer reflex in G3. We have used at most ci + r3 new edges.
All ci non-singleton components have been connected, and the number of reflex vertices in the interior of
ch(G) has dropped by r3.

Stage 4. Eliminate bridges. Replace every bridge lying inside ch(G) by a double edge. The total multi-
plicity of edges increases by at most bi . We obtain a PSLMG G4, which consists of one 2-edge-connected
component K and si singletons lying in the interior of ch(G).

Stage 5. Adding new edges at reflex vertices in the interior of ch(G). Arguably, this is the most com-
plicated stage of our augmentation algorithm. At the beginning of this stage, we have a PSLMG G4 that
consists of a 2-edge-connected PSLMG K (which contains all hull edges) and some singletons. There are
at most ri − r3 reflex vertices in the interior of ch(G). We modify K (by adding some new edges and “de-
forming” some of the deformable edges) to a PSLMG where every 3-edge-connected component is incident
to the outer face, and increase the number of edges by at most ri − r3 . We also compute a decomposition
of the interior of ch(G) into convex regions with property (♡).

Let R initially be the set of reflex vertices in the interior of ch(G). We have |R| ≤ ri − r3. Algorithm 1
(below) will process the vertices in R, and increase the number of edges by one for each u ∈ R. It either
adds a new edge uv, or replaces some deformable edge vw by two new edges vu and uw. Every vertex
of R is processed just once, and then it is immediately removed from R, even if it remains a reflex vertex.
Algorithm 1 will maintain a set of bounded faces F , and a deformable edge τ(F ) for every face F ∈ F .
Initially, F contains all bounded faces of G4. As the algorithm proceeds, however, F may cease to contain
all of the bounded faces. In addition, F may possibly contain a 2-gon (in case a new edge is parallel to some
edge of G4).

We introduce some notation. Let u ∈ V be a reflex vertex of G4 lying in the interior of ch(G). Let Wu

denote the reverse wedge of the reflex angle at u in G4, let a⃗u be the bisector ray of the reflex angle at u in
G4. Let Fu denote the face at u containing some initial portion of the ray a⃗u, and let xu be the point where
a⃗u hits the boundary of Fu. Wedge Wu and ray a⃗u are defined for the input PSLMG of Algorithm 1, and do
not change during the algorithm, however, face Fu and xu may change when the algorithm adds or deforms
edges. We define orientation for every reflex vertex u with respect to the deformable edge τ(Fu). We say that
a reflex vertex u is ccw (resp., cw) if xu ̸∈ τ(Fu) and the triple (τ(Fu), u, xu) is in counterclockwise (resp.,
clockwise) order along the boundary of Fu. Visibility is defined with respect to the current (augmented)
PSLMG, where all edges are opaque: a point p is visible to point q if the relative interior of segment pq is
disjoint from the edges of the PSLMG.
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Algorithm 1
Input: A PSLMG G4 = (V,E4) that consists of some singletons and a 2-edge-connected component such
that the boundary of the outer face is a simple polygon P4 = ch(V ); and a function τ that maps a unique
edge τ(F ) to every bounded face F of G4.
Output: G5 = (V,E5).
Set R := the set of reflex vertices lying in the interior of P4. Compute Wu and a⃗u with respect to G4 for
every vertex u ∈ R (Wu and a⃗u are fixed during the whole algorithm). Let F be the set of all bounded
faces of G4. Set E5 := E4.
while R ̸= ∅ do

if there is a vertex u ∈ R that sees a non-singleton vertex v in Wu (Fig. 7(a-b)), then
set E5 := E5 + {uv} and R := R \ {u}. Edge uv splits face Fu ∈ F into two faces. Update F by
replacing Fu with the new faces. Following Rule (∗), edges τ(Fu) and uv become the deformable
edges of the two new faces. If v ∈ R and uv splits the reflex angle at v into two convex angles, then
set R := R \ {v}.

else if there is a vertex u ∈ R such that a⃗u does not hit τ(Fu) (Fig. 7(c-d)), then
among all vertices u ∈ R where a⃗u does not hit τ(Fu), pick a vertex u ∈ R which is either the first
ccw reflex vertex along the boundary of Fu starting from τ(Fu) in ccw direction or the first cw reflex
vertex of Fu starting from τ(Fu) in cw direction. Let vw be the edge hit by a⃗u such that v is on the
same side of a⃗u as τ(Fu). Compute the shortest path path(u,w) in Fu, and denote its vertices by
path(u,w) = (u = p0, p1, p2, . . . , pℓ = w). Set E5 := E5 + {pjpj+1 : 0 ≤ j ≤ ℓ − 1} (possibly
increasing the multiplicity of some edges) and R := R \ {pj : 0 ≤ j ≤ ℓ − 1}. If w ∈ R and
pℓ−1w splits the reflex angle at w into two convex angles, then set R := R \ {w}. The new edges
split Fu ∈ F into ℓ+ 1 new faces (some of which may be a 2-gon). Update F by replacing Fu with
the new faces. Following Rule (∗), edges τ(Fu) and pjpj+1, 0 ≤ j ≤ ℓ− 1, become the deformable
edges of the new faces in F .

else
for every u ∈ R, ray a⃗u hits edge τ(Fu) (Fig. 7(d-e)). Pick a vertex u ∈ R such that the distance
between u and the supporting line of edge τ(Fu) is minimal. Let vw = τ(Fu). Set E5 := (E5 \
{τ(Fu)}) + {uv, uw} and R := R \ {u}. The new edges split Fu ∈ F into 3 new faces. Update F
by replacing Fu with the two new faces adjacent to uv or uw (but not both), and let their deformable
edges be uv and uw, respectively. If τ(Fu) is parallel to an edge of the original graph G, then the
triangular face (u, v, w) is a new face, which is not in F . Otherwise, the removal of edge τ(Fu)
merges triangle (u, v, w) with a face F ′ lying on the opposite side of vw; update F by replacing F ′

with this new face.
end if

end while
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Figure 7: The three rows show three consecutive while loops of Algorithm 1. Deformable edges are marked with
dashed lines. Reflex vertices in R are marked with little circles. (a) A PSLG G4, and a vertex u ∈ R that sees a
non-singleton vertex v in Wu. (b) We augment the graph with uv. (c) Vertex u ∈ R where a⃗u does not hit τ(Fu). (d)
We augment the graph with all edges along the chain (u, p1, p2, p3). (e) Vertex u ∈ R where a⃗u hits τ(Fu). (f) We
deform τ(Fu) = vw into the path (v, u, w).
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We refer to the three cases in the while loop of Algorithm 1 as case 1, case 2, and case 3, respectively.

Lemma 6.2 The execution of the while loop in Algorithm 1 is partitioned into three consecutive phases
(some of which may be empty) such that case i applies to all vertices u ∈ R processed in phase i , for
i = 1, 2, 3.

Proof. Case 1 applies for a vertex u ∈ R that sees a non-singleton vertex in Wu. Since no edges are
removed in Cases 1 and 2, no new visibilities occur during applications of these cases. It follows that, in
general, the while loop in Algorithm 1 starts with zero or more applications of Case 1, followed by zero or
more applications of Case 2, and then (possibly) by the first application of Case 3. If Case 3 is not applied
during Algorithm 1, then the lemma clearly holds.

Just before the first application of Case 3, we have the following two properties: (1) For every u ∈ R,
the ray a⃗u hits edge τ(Fu); otherwise Case 2 would apply for u. (2) Every ray emanating from u within
wedge Wu also hits edge τ(Fu); otherwise Case 1 would apply for u. If Case 3 applies for some u ∈ R,
then for every v ∈ R, v ̸= u, the rays emanating from v within Wv will continue to hit τ(Fv), even if Fv

becomes smaller and the original τ(Fv) is replaced by two edges (this happens if Fu = Fv before applying
Case 3 for u). Thus, properties (1) and (2) are maintained in the remainder of Algorithm 1, and so only
Case 3 may be applied. The lemma follows. 2

Lemma 6.2 means that when we consider Case 1, we may assume that Cases 2 and 3 have not occurred
before; and when we consider Case 2, we may assume that Case 3 has not occurred before.

The following lemma, describes the non-singleton components of the output of Algorithm 1. Note that
Algorithm 1 does not add edges incident to any singletons of G4, and so the G4 and G5 have the same
singletons.

Lemma 6.3 Algorithm 1 outputs a PSLG G5 such that, apart from possible singletons, the boundary of the
outer face is a simple polygon P5, and every 3-edge-connected component is incident on P5.

Proof. Consider the output G5 = (V,E5) of Algorithm 1. Note that Algorithm 1 does not necessarily
augment G4 to G5, since it may replace a deformable edge vw = τ(Fu) by a path (v, u, w). In the course of
several steps, an edge vw = τ(Fu) of G4 may “evolve” into a simple path between v and w. In particular,
for any partition of the vertex set V , the number of edges among the subsets of vertices cannot decrease.

We have P4 = ch(G). The boundary of the outer face is modified during the algorithm if a ray a⃗u of
a vertex u ∈ R hits an edge τ(Fu) = vw along the outer face, and the edge vw is replaced by the edges
uv and uw. Then vertex u becomes a vertex of the outer face and is removed from R. Every such step
maintains the property that the boundary of the outer face is a simple polygon, and no point of R lies on this
boundary. Moreover, int(P5) ⊆ int(P4).

Next we show that every 3-edge-connected component of G5 is incident on the outer face. Suppose, to
the contrary, that there is a 2-bridge {e, f} in G5 such that both e and f are inside P5. The graph G5−{e, f}
has two connected components, which we denote by G5(U) and G5(V \ U) with vertex sets U and V \ U ,
respectively. We may assume without loss of generality that U lies in the interior of P5 (and V \U contains
all vertices of P5). Hence U also lies in the interior of P4. Since G4 is 2-edge-connected, there are exactly
two edges, say e0 and f0, between U and V \U in G4 (Fig. 8, left). We may assume that either e0 = e or e0
evolves to a path that contains e; and similarly, either f0 = f or f0 evolves to a path that contains f .

Since G4 is 2-edge-connected, the minimum vertex degree in both G4 and G5 is at least 2. Every vertex
of degree 2 is reflex. Algorithm 1 increased the degree of every vertex of degree 2 lying in the interior of
P4 to at least 3. It follows that G5(U) cannot be a singleton (which would be incident to e and f only), or
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Figure 8: Left: A 2-bridge {e0, f0} in G4. Middle: Algorithm 1 has processed two vertices and {e0, f0} remains
a 2-bridge. Right: Algorithm 1 terminates, and the edges e0 and f0 evolve into paths containing the edges {e, f}
between U and V \ U .

a path of collinear edges (where each endpoint would be incident to the path and either e or f ). Therefore,
G5(U) has at least three non-collinear vertices, and so ch(U) has at least three extremal vertices.

The PSLG G4 has exactly two faces adjacent to both U and V \ U , say faces F1 and F2, each of which
is adjacent to both e0 and f0. Every vertex on the convex hull ch(U) is incident to F1 or F2 (or both).
Algorithm 1 modifies edges e0 or f0 only in phase 3, if they are the special edges τ(F1) or τ(F2), and all
rays a⃗u, u ∈ R, lying in F1 and F2 hit these edges.

By Lemma 5.6, ch(U) has an extremal vertex u such that the reverse wedge of the exterior angle of
ch(U) at u does not intersect e0 or f0 (except possibly in u). Vertex u is reflex in G4, it lies in the interior
of P4, and so it is initially in R. Since the edges of G4 incident on u lie on or inside ch(U), the wedge Wu

is part of the reverse wedge of ch(U) at u. Hence a⃗u hits some edge spanned by V \ U .
We distinguish three cases depending on the phase in which Algorithm 1 processes u. If u is processed

in phase 1, then it is connected to a vertex in V \U . If u is processed in phase 2, then a⃗u hits some edge vw
with v, w ∈ V \U , and we add all edges along the a geodesic path(u,w), including a new edge between U
and V \ U . If u is processed in phase 3, ray a⃗u hits the edge τ(Fu) between two vertices of V \ U , which
is necessarily different form e0 and f0, and τ(Fu) evolves into a path through u. In all three cases, we add a
new edge between U and V \ U . This contradicts the assumption that {e, f} is a 2-bridge in G5. 2

Lemma 6.4 At the end of stage 5, we have λ(G5) ≤ ch + gh + s.

Proof. At the end of stage 2, we have λh(G2) ≤ ch+ gh+ sh by Lemma 6.1. All convex hull edges remain
part of our graph in stages 3-4, and the addition of new edges can only merge some of the 3-edge-connected
components incident on the convex hull. So at the end of stage 4 we still have λh(G4) ≤ ch+gh+sh. Since
every 3-edge-connected component of G5 is either one of the si singletons or incident on the outer face P5,
we have λ(G5) = λh(G5) + si. It is enough to show that λh(G5) ≤ λh(G4).

Assume that P4 is the boundary of the outer face in G4. Algorithm 1 may change P4 by replacing an
edge vw of P4 with the edges vu and uw for some reflex vertex u ∈ int(P4). In each such step, a new
vertex u appears along the outer face. By Lemma 6.3, the vertex u is connected to another vertex of the
outer face by a path that lies in the interior of P5. So this deformation does not increase the number of
3-edge-connected components incident on the outer face, and so we have λh(G5) ≤ λh(G4). 2

Lemma 6.5 Algorithm 1 increases the number of edges by at most ri − r3.

Proof. It is enough to show that in each step, we add at most one new edge for each vertex removed from
R, since |R| ≤ ri − r3. This is clearly true for Case 1 and Case 3. In Case 2, we add ℓ new edges, so we
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need to show that ℓ vertices were removed from R. Vertex u = p0 was removed from R. It is enough to
check that all reflex vertices p1, p2, . . . , pℓ−1 are in R at the beginning of the step.

u

v

p3 = w

p1

p2
−→a u′

−→a u

v

p3 = w

τ (Fu′)

Fu′ Fu u′

u
u′

−→a u

p1

p2

τ (Fu)

Figure 9: We suppose, by contradiction, that Case 2 is first applied for a vertex u′ ∈ R (left); and then Case 2 is
applied for vertex u ∈ R (right) but the reflex vertices p1 and p2 are no longer in R.

Suppose that some reflex vertex pi, 1 ≤ i ≤ ℓ − 1, is not in R. Recall that in phase 2, only Cases 1
or 2 has occurred before (Lemma 6.2), so no deformable edge has been deformed yet. The reflex vertices
processed in phase 1 are no longer reflex in phase 2. That is, pi has been processed in an earlier step of
phase 2. There was a reflex vertex u′ (possibly u′ = pi) that did not see any vertex in its wedge Wu′ , ray
a⃗u′ did not hit τ(Fu′), and the path path(u′, w) passed through vertex pi. Refer to Fig. 9. However, then
a⃗u′ and a⃗u hit the same edge vw. Ray a⃗u′ splits Fu′ into two parts, where u is incident to the part adjacent
to τ(Fu′). This contradicts the choice of u′ (that is, u ∈ R would have been chosen instead of u′ ∈ R). This
proves that vertices pi, i = 1, 2, . . . , ℓ− 1, are in R at the beginning of the step. 2

Construction of a convex cells with property (♡). We construct a tiling of ch(G) with property (♡)
simultaneously with Algorithm 1. We maintain a (not necessarily convex) region C(F ) for every face
F ∈ F . Initially, C(F ) is the interior of face F for every F ∈ F . Let C = {C(F ) : F ∈ F}. During
Algorithm 1, the following invariants are maintained:

(I1) The regions in C are interior disjoint, and they tile ch(G);
(I2) for every F ∈ F , the set of reflex angles of C(F ) equals the set of reflex angles of F with apex in R;
(I3) for every F ∈ F , the endpoints of the deformable edge τ(F ) lie on the boundary of C(F );
(I4) for every F ∈ F , the only edge that possibly intersects the interior of C(F ) is τ(F ).

An immediate corollary of the invariant I1 is that at the end of Algorithm 1 (when R = ∅), C is a convex
subdivision of ch(G).

Lemma 6.6 We can maintain a set C of regions with invariants I1–I4 through Algorithm 1.

Proof. Initially, for every bounded face F in G4, we set C(F ) := int(F ), which satisfy invariant I1–I4.
We maintain the regions C(F ), F ∈ F , in the three phases of Algorithm 1 as follows:
Phase 1. In case 1, a new edge uv decomposes the face Fu into two faces, whose deformable edges are
τ(Fu) and uv, according to Rule (∗). We split C(Fu) = int(Fu) into two regions along uv. At the end of
phase 1, we still have C = F . It is easily checked that invariants I1–I4 still hold.
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Phase 2. By Lemma 6.2, no deformable edges has been deformed yet. In Case 2, we have a vertex
u ∈ R such that a⃗u hits an edge vw ̸= τ(Fu) at xu = vw ∩ a⃗u. The shortest path path(u,w) =
(u = p0, p1, . . . , pℓ = w) is homotopy equivalent to the path (u, xu, w). A pseudo-triangle is formed
by path(u,w) and the segments uxu and xuw, and so path(u,w) passes through reflex vertices of Fu at
p1, p2, . . . , pℓ−1. Each new deformable edge pjpj+1 is adjacent to a unique new face in F .

By I2, the initial portion of a⃗u is in C(Fu). Let yu be the point where a⃗u hits the boundary of C(Fu).
Refer to Fig. 10. By invariant I4 and because a⃗u does not hit τ(Fu), ray a⃗u hits the boundary of C(Fu) at or
before xu. That is, yu lies on the segment uxu. If yu = xu, then we decompose C(Fu) as follows. The rays
a⃗pj , j = 0, 1, . . . , ℓ − 1 (in this order) split C(Fu) into ℓ + 1 regions. Each new deformable edge pjpj+1

lies between two bisectors, a⃗pj and a⃗pj+1 , and hence in a unique new region (Fig. 10, first row). It is easy to
check that invariants I1–I4 are maintained.
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−→a u
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F u
)

C(Fu)
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v
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F u
)
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Figure 10: Decomposing a cell C(Fu) along the rays a⃗u in two consecutive steps in phase 2. First row: xu = yu,
and C(Fu) is partitioned along a⃗pj , j = 0, 1, 2. Second row: xu ̸= yu, the regions associated with F ′

1, F ′
2 and F ′

3 spill
over into Fu, and some of them are truncated along yuw so that they are disjoint from any newly inserted edge.

If yu ̸= xu, then we need to be more careful because the regions C(F ′) of some faces F ′ ∈ F adjacent
to F extends into the interior of Fu (Fig. 10, second row). In order to maintain invariant I4 for such a
face F ′, the region C(F ′) may have to be truncated to assure that it is disjoint from the new edges pjpj+1,
j = 0, 1, . . . , ℓ−1. Point yu lies on the ray a⃗u′ emitted from some vertex u′ processed earlier in phase 2. By
the choice of reflex vertices in phase 2, u′ and u have opposite orientations with respect to τ(Fu). Assume,
without loss of generality, that u is ccw and u′ is cw. The part of face Fu on the left side of a⃗u′ is a pseudo-
triangle ∆u′ bounded by segments u′xu′ , xu′vu′ , and a reflex chain (u′ = p′0, p

′
1, . . . , p

′
ℓ′ = w′); and ∆u′ is

covered by regions associated with the faces adjacent to p′0p
′
1, . . . , p

′
ℓ′−1p

′
ℓ′ . We define an auxiliary region

C̃u to be the union of C(Fu) and part of ∆u′ . Specifically, decompose ∆u′ along segment yuw and ray
−→vw, and let C̃u contain the part lying on the same side as uw. The region C̃u is the union of C(Fu) and
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a convex set adjacent to yuw. Hence, the reflex vertices of C̃u are yu and some reflex vertices of Fu in R
(including u). Now the rays a⃗pj , j = 0, 1, . . . , ℓ− 1 (in this order) split region C̃u into ℓ+ 1 regions. Each
new deformable edge pjpj+1 lies between two bisectors, a⃗pj and a⃗pj+1 , and hence in a unique new region.
Since a⃗u passes through yu, the resulting regions in C do not have reflex vertices at yu. The regions covering
∆u′ have been truncated such that they are disjoint from all new edges, and they have no reflex vertices in
∆u′ . Invariants I2–I4 are now maintained for all faces F ∈ F .
Phase 3. For every u ∈ R, ray a⃗u hits edge τ(Fu) = vw, and vw is replaced by edges uv and uw. Let
a⃗u split region C(Fu) into two regions. By invariant I4, vw = τ(Fu) is either adjacent to or lies in cell
C(Fu), and cell C(Fu) may extend to the opposite side of τ(Fu). Since u is the vertex of R closest to the
line spanned by τ(Fu), and all reflex angles of Fu with apex in R are reflex angles of C(Fu) (invariant I3),
we conclude that the relative interiors of both uv and uw are in C(Fu), and hence in Fu. Now it is easy to
verify that invariants I2–I4 are maintained in this case, too. 2

Corollary 6.7 When Algorithm 1 has processed all vertices in R, every region in C is convex, and C is a
tiling of ch(G) into convex regions. The convex cells in C have property (♡), where a convex cell C(F )
corresponds to the deformable edge τ(F ). 2

Stage 6. Connecting singletons. There are si singletons in the interior of ch(G), which lie in convex
regions Cj ∈ C with property (♡). In each convex region Cj , j = 1, 2, . . . , ℓ, we replace the deformable
edge ej = ujvj by a path between uj and vj that lies entirely in Cj and passes through all singletons in Cj .
Let m be the number of singletons in the interior of Cj . Label them as p1, p2, . . . , pm as follows. First label
the singletons on the left of ⃗ujvj in the decreasing order of angles ∠(vj , uj , pi); then label the singletons
on the right of ⃗ujvj in increasing order of angles ∠(uj , vj , pi). See two examples in Fig. 11. Replace edge
ujvj by the simple path (uj , p1, p2, . . . , pm, vj). Replace any remaining pairs of parallel edges by a single
edge. We obtain a 2-edge-connected PSLMG G6. The number of edges has increased by si . Each of the
si singletons of G5 becomes a 3-edge-connected component in G6. Hence the number of 3-edge-connected
components does not change, we have λ(G6) = λ(G5) ≤ ch + gh + s.

uj

vj
uj

vj

Cj Cj

Figure 11: Expanding a deformable edge ujvv to a path.

Stage 7. Eliminating 2-bridges. The input PSLG G was 3-edge-augmentable. In stages 1-6, we have not
added any chords of ch(G), and so at the end of stage 6, we have a 2-edge-connected 3-edge-augmentable
PSLMG G6. We apply Lemma 5.3 to obtain a 3-edge-connected PSLG G7 with at most λ(G6) − 1 =
ch + gh + s− 1 new edges. This completes our augmentation algorithm.

Theorem 2 Every 3-edge-augmentable PSLG G with n ≥ 4 vertices can be augmented to 3-edge-connected
PSLG with at most 2n− 2 new edges.
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Proof. In stages 1-7, we have added at most bi + c + f + r + 2s − 1 new edges. If G is not a forest, this
is at most 2n− 2 by Corollary 5.5. If G is a forest and has an edge (bridge) along ch(G), then bh ≥ 1, and
again bi + c+ f + r + 2s− 1 ≤ 2n− 2.

Let G be a forest with no edges along the convex hull (i.e., bh = 0). We would like to show that our
augmentation algorithm used fewer than bi + c+ f + r + 2s− 1 new edges. We distinguish four cases.
• Case 1. A non-singleton component of G has two vertices, u and v, along the convex hull. By adding all
hull edges in stage 2, we eliminate the bridges along the path between u and v, and so we add fewer than bi
new edges in stage 4.
• Case 2. Every component of G has at most one vertex along the convex hull, and ci ≥ 1. Then in stage 3
we add two new edges to a vertex of each non-singleton component in the interior of ch(G). The two edges
form a circuit with K, and so it either decreases λh(G3) or eliminates a bridge in the interior of ch(G).
• Case 3. Every component of G has at most one vertex along the convex hull, ci = 0, but G2 has a bridge.
Then in stage 4 we add a new edge for each bridge. The first such new edge creates a circuit, which either
contains another bridge of G3 (eliminating at least two bridges at once), or contains a hull edge, decreasing
λh(G3) by at least one.
• Case 4. G consists of n singletons. Then one can augment G to a plane Hamiltonian circuit H (e.g., the
Euclidean TSP tour on n vertices), with n new edges. The circuit H is 3-augmentable by Proposition 2.2.
We can augment the edge-connectivity from 2 to 3 with at most n−2 new edges by Theorem 1. In this case,
again, G can be augmented to a 3-edge-connected PSLG with at most 2n− 2 new edges. 2

7 Algorithmic aspects

In this section, we study the algorithmic aspects of our results. The input of all our algorithms is a PSLG G
with n ≥ vertices, no three of which are collinear. Note that the non-collinearity condition is not necessary
for our results in Sections 2–6. In this section, however, we rely on data structures that are available only
under this additional condition. (It is likely that all our algorithms can be implemented with the same time
bounds for arbitrary vertex sets, but the possible generalization of the relevant data structures goes beyond
the scope of this paper.)

We use the real RAM model of computation. We assume that the input PSLG G is given with the
coordinates of all vertices and an edge list. We store each connected component of a PSLG in the standard
doubly-connected edge list (for short, DCEL) data structure, which can be constructed in O(n) time [32].
A PSLG with n vertices has O(n) edges. The DCEL maintains a vertex list, a face list, and then stores,
for each edge, the two incident vertices, the adjacent faces on the two sides of the edge (a bridge edge is
adjacent to the same face on both sides), and the counterclockwise next edge in each face. From the DCEL,
one can easily extract the boundary of each face (in a connected component), and the adjacent edges of each
vertex in the order in which they appear around the vertex.

Testing augmentability. Given a PSLG G with n ≥ 4 vertices, we can test in O(n log n) time whether
G is 3-augmentable or 3-edge-augmentable. We apply Propositions 2.2 and 2.3. Compute the convex hull
ch(G) in O(n logn) time [11], mark each extreme vertex in the vertex list, and then mark the edges of G
that join two nonconsecutive extreme vertices as chords of ch(G). If not all vertices lie on the convex hull
and none of the edges is a chord of ch(G), then G is 3-augmentable.

For testing whether G is 3-edge-augmentable, we need to check for each chord edge of ch(G) whether
the vertices lying on either side are all on the convex hull. The chord edges partition ch(G) into convex
sectors. We can construct a dual graph on the sectors in O(n) time: the nodes corresponds to sectors, two
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nodes are adjacent iff the corresponding sectors are adjacent to the same chord of ch(G). The dual graph is a
tree, since the removal of each chord disconnected ch(G). Now G is 3-edge-augmentable if and only if each
sector corresponding to a leaf in the dual graph contains a vertex of G in its interior. Compute the boundaries
of the sectors corresponding to the leaves in the dual graph in O(n) time. A sweep-line algorithm can detect
whether each leaf sector contains a vertex lying in their interior in O(n log n) time.

If G is connected then the time complexity drops to O(n). The convex hull ch(G) can be computed in
O(n) time [24]. Instead of a sweep-line algorithm, we can traverse the part of G clipped in each leaf sector
in O(n) total time, and report whether each contains a vertex in their interior.

Constructing 3-edge-connected or 3-connected triangulations. Every 3-edge-augmentable PSLG G
with n ≥ 4 vertices can be augmented to a 3-edge-connected triangulation in O(n log n) time. If G is
connected then the time complexity drops to O(n). We follow the algorithm described in the proof of
Proposition 2.3. Compute the convex hull ch(G) in O(n log n) time (O(n) time if G is connected), and
augment G with all hull edges. If G is disconnected, then scan G with a vertical sweep line in O(n log n)
time, and in every component lying in the interior of ch(G), connect the right-most vertex to an arbitrary
visible vertex on its right. The result is a connected 3-edge-augmentable PSLG G0.

Every bounded face of G0 is a weakly simple polygon. We triangulate each bounded face independently.
If G0 is 3-augmentable, then every bounded face has a vertex that lies in the interior of ch(G). Let P be a
face of G0, and assume that P has m vertices. If P has a vertex v that lies in the interior of ch(G), then
augment G′ with the shortest paths from v to all other vertices of P . All shortest paths can be computed
in O(m) time [12], and they decompose P into pseudo-triangles. Every diagonal in a pseudo-triangle is
incident to a reflex vertex, and a reflex vertex necessarily lies in the interior of ch(G). So we can arbitrarily
triangulate every pseudo-triangle to obtain a triangulation of P .

If G is 3-edge-augmentable, then it is possible that every vertex of P lies on ch(G). Then P is a
convex polygon, and it has two edges, say e and f , which are chords of ch(G). Denote the vertices of P by
u1, u2, . . . , um in counterclockwise order, such that e = u1u2 and f = ujuj+1. Triangulate P by adding
the diagonals u1u3, u1u4, . . . , u1uj and ujuj+2, ujuj+3, . . . , ujum. All new diagonals separate e and f .
Since we have not added any chord such that all vertices on one side lie on the convex hull, the resulting
triangulation is 3-edge-connected.

Augmenting the edge-connectivity from two to three. Given a 2-edge-connected and 3-edge-augmentable
PSLG G = (V,E) with n ≥ 4 vertices, we can augment G it to a 3-edge-connected PSLG in O(nα(n))
time by adding at most λ(G) − 1 new edges, where α(n) is the inverse Ackermann function (which grows
extremely slowly). We follow the algorithm in the proof of Lemma 5.3. Construct a 3-edge-connected trian-
gulation G′ = (V,E′) for G in O(n) time (as above). La Poutré [31] devised a semi-dynamic data structure
for maintaining the 3-edge-connected components of a graph. Starting from the empty graph, it supports
O(n) edge insertions in O(nα(n)) total time. It can answer queries, whether two vertices are in the same
3-edge-connected component, in O(1) time. (For an O(n log n) time algorithm, we may use simpler data
structures in [30, 7], which runs in O(n log n) total time.)

Augmenting the edge-connectivity to three. Given a 3-edge-augmentable PSLG G with n ≥ 4 vertices,
it can be augmented to a 3-edge-connected PSLG in O(n log n) time by adding at most 2n− 2 new edges.

We store each connected component of a PSLG in a standard DCEL data structure. We also maintain the
boundary of each face and the neighbors of each vertex (i.e., the rotation of the vertex) in doubly-linked lists,
endowed with binary search trees. In the component K ⊆ G containing the convex hull vertices, we also
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maintain a dynamic data structure of Goodrich and Tamassia [10]. For a connected PSLG with n vertices, it
requires O(n) space and O(n log n) preprocessing time. It supports any ray shooting query, edge insertion,
and deletion in O(log2 n) time. Between any two points, it can report the length of shortest path, as well
as the first and last edges of the shortest path in O(log2 n) time. Note that this data structure works for
connected graphs only (each face has to be simply connected), so it is important that we maintain it only for
one component of G (ray shooting among disjoint components would require heavier machinery).

We consider the seven stages of our augmentation algorithm one by one. In stage 1, we can easily
choose a deformable edge in each bounded face. The DCEL data structure supports the maintenance of a
deformable edge for the bounded faces in stages 2-5. When a new edge splits a face F into two subfaces
we can tell which subface is bounded and which is adjacent to τ(F ) in O(log n) time. So we can assign a
deformable edge to each bounded subface in O(log n) time. Since the number of faces remains O(n) during
the augmentation, the deformable edges can be maintained in O(n log n) total time. In stage 2, the convex
hull ch(G) can be computed in O(n log n) time.

For the recursive procedure in stage 3, we also maintain a semi-dynamic (delete-only) convex hull data
structure for the set U of vertices of the subgraph H of all non-singleton components lying in the interior of
ch(G). Data structures by Chazelle [2] and by Hershberger and Suri [14] support O(n) vertex deletions in
O(n log n) total time. For a vertex u ∈ U , we can find the first edges uv1, uwq of the shortest path from u
to v and w, respectively, in O(log2 n) time with the data structure of Goodrich and Tamassia [10]. We find
the vertices u1 with a tangent queries to the convex hull ch(H), and use binary search for finding adjacent
vertices u′ and u′′ along ch(H).

In stage 4, we are given a connected PSLG G3 (ignoring the singletons for the moment), and we augment
it to a 2-edge-connected PSLG with at most b new edges. We maintain a union-find data structure for the
2-edge-connected components of G3. Compute a 3-edge-connected triangulation T containing G3 in O(n)
time (as described above). We augment G3 incrementally as follows. Augment G3 with every edge e in
T − G3 which connects distinct 2-edge-connected components of the current graph. The addition of any
new edge merges two 2-edge-connected components into one, so we augment G3 with exactly b new edges.

In Stage 5, Algorithm 1 can be implemented in O(n log2 n) time using O(n) ray shooting and shortest
paths queries of the Goodrich-Tamassia data structure. Similarly, the construction of the subdivision C
(described in Lemma 6.6) can be implemented with O(n) ray shooting queries of a separate Goodrich-
Tamassia data structure, for the subdivision C of ch(G). In stage 6, all deformable edges can be deformed
to paths visiting all singletons lying in the corresponding convex region in O(n log n) total time. Finally,
Stage 7 can be completed in O(nα(n)) time, as described above, where α(.) is the inverse Ackermann
function.

8 Conclusion

We have described how to augment a 3-edge-augmentable PSLG with n ≥ 4 vertices to a 3-edge-connected
PSLG using at most 2n− 2 new edges. The resulting graph is not necessarily 3-connected (e.g., if the input
is not 3-augmentable). It remains an open problem whether any 3-augmentable PSLG with n ≥ 4 vertices
can be augmented to a 3-connected PSLG with at most 2n− 2 new edges.

Conjecture 8.1 Every 3-augmentable PSLG with n ≥ 4 vertices can be augmented to a 3-connected PSLG

by adding at most 2n− 2 new edges.

We may consider embedding preserving augmentations of a PSLG such that the new edges are allowed
to be arbitrary Jordan arcs (not necessarily straight line segments). In this case, the input is a PSLG and
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the output is a planar topological graph (for short, PTG). If the new edges are not restricted to be straight
line segments, then the constraints in Proposition 2.1 and Proposition 2.2 no longer apply. Every PSLG

with n ≥ 4 vertices has an embedding preserving augmentation to a 3-connected and 3-edge-connected
PTG: Any PSLG can be triangulated with curved edges such that the outer face is a triangle. Determining
the minimum number of new edges that can augment any PSLG with n ≥ 4 vertices to a 3-connected or
3-edge-connected PTG is an open problem.

Conjecture 8.2 Every 2-connected PSLG G with n ≥ 4 vertices can be augmented to a 3-connected topo-
logical graph by adding at most 4

5n−O(n) new edges.

Conjecture 8.3 Every 2-edge-connected PSLG G with n ≥ 4 vertices can be augmented to a 3-edge-
connected topological graph by adding at most 4

5n−O(n) new edges.

These bounds would be optimal in the worst case. A lower bound construction consists of a (straight
line) triangulation on k vertices, which has 2k− 4 faces, and a path with two internal vertices lying in every
face. So G has a total of n = k+(2k−4)2 = 5k−8 vertices, and we have k = (n+8)/5. In order to raise the
degree of every vertex in the interior of the triangular faces to 3, we need at least (2k− 4)2 = 4

5(n− 2) new
edges. This is also a lower bound on the number of curved edges required for augmenting the connectivity
or edge-connectivity to three.

Finally, note that all our results are only worst-case optimal. An arbitrary 3-edge-augmentable PSLG G
may be augmented to 3-edge-connectivity with significantly fewer than 2n−2 new edges. Our augmentation
algorithm may add a large number of edges (e.g., one new edge for each reflex vertex in Stage 5) even if
a single new edge would be sufficient. It would be interesting to design efficient approximation algorithms
for the edge-connectivity and vertex-connectivity augmentation of PSLGs.
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