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Abstract. Spherical occlusion diagrams (SOD) were introduced by Vigli-
etta as an axiomatic framework to analyze the visibility maps of points
in the interior of a nonconvex polyhedron from which no vertex is visi-
ble; and conjectured that every SOD is realizable as a visibility map of
a point in some polyhedron. In this paper, we disprove this conjecture,
and construct an SOD that is not realizable as a visibility map.
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1 Introduction

The classical art gallery problem asks for the minimum number of point guards
that can jointly see all points in a nonconvex polyhedron P in Euclidean space,
where points s and t see each other if the line segment st is contained in P. It
is well known that guards stationed at the vertices of P do not always suffice in
R3, as some points s ∈ R3 in the interior of a polyhedron P may not see any of
the vertices [5, Sec. 10.2]. Viglietta [9, 10] recently introduced spherical occlusion
diagrams (SOD, for short) to analyze the visibility map VP(s) of such a point
s with respect to P. An SOD is defined (cf. Section 2) so that it satisfies key
properties of visibility maps. In particular, if no vertices of a polyhedron P are
visible from a viewpoint s, then the visibility map VP (s) is an SOD. Initially,
Viglietta [9, version 1] conjectured that the converse also holds; that is, every
SOD is the visibility map VP (s) for some point s and polyhedron P in R3. The
main result of this paper (Theorem 2) disproves this conjecture by constructing
an SOD that is not realizable as a visibility map in R3. In subsequent versions
of Viglietta’s paper [10], this conjecture was replaced with a reference to our
counterexample. More recently, Viglietta [10, Conjecture 5] conjectured that the
counterexample can be strengthened and there exists an irreducible SOD (defined
below) that is not realizable. We prove this recent conjecture and construct an
irreducible SOD that is not realizable (Theorem 3).

Related work. Our results show that SODs are not always visibility maps. Never-
theless, SODs have already been used in 3-dimensional visibility problems: Cano
et al. [2] proved that every polyhedron P in R3 can be guarded by at most 5

6
of its edges; moreover, when P is homeomorphic to a ball and all its faces are
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triangles, it can be guarded by at most 29
36 of its edges. Tóth et al. [8] proved

that every point that does not see any vertex of a polyhedron P must see at
least 8 edges of P, and this bound is tight.

The realizability of visibility maps have been previously studied for lines. A
weaving pattern is a simple arrangement of n lines in R2 together with a binary
relation between intersecting lines; a weaving pattern is realizable if it is the
orthogonal projection of an arrangement of disjoint lines in R3 such that the
above-below relation between lines matches the given binary relation between
their orthogonal projections. Pach et al. [7] showed that almost all weaving pat-
terns of n lines are nonrealizable for sufficiently large n. Basu et al. [1] generalized
the result to arrangements of semialgebraic curves.

Organization. In Section 2, we review spherical occlusion diagrams (SODs),
and introduce their planar analogues, planar occlusion diagrams (PODs). In
Section 3, we construct a family of PODs by modifying a well-known nonregular
triangulation (depicted in Fig. 2) in four stages. In Section 4, we show that
these PODs cannot be realized as visibility maps from the viewpoint z = −∞.
Then in Section 5, we lift the nonrealizable PODs to the sphere, using spherical
projections, to obtain nonrealizable SODs. We conclude with open problems in
Section 6.

2 Preliminaries

Visibility maps. We consider visibility with respect to polygonal obstacles in R3,
this setting includes visibility in a polyhedron as a special case [6]. A polygonal
scene P is a finite collection of 2-dimensional polygons in R3 with pairwise
disjoint relative interiors, where a 2-dimensional polygon is a connected set with
piecewise linear boundary in an affine plane in R3 (e.g., a polygon in P may be a
halfplane or an unbounded 2-dimensional polytope). In particular, the collection
of 2-faces of a polyhedron in R3 is a polygonal scene. Two points s, t ∈ R3 see
each other (with respect to P) if the relative interior of the line segment st is
disjoint from all polygons in P. For a point s ∈ R3 and a polygonal scene P,
the visibility polyhedron VP(s) is the closure of the set of points in R3 that are
visible to s (note that VP(s) may be unbounded); and the visibility map Ps is
the projection of the vertices, edges, and faces of VP(s) to a sphere centered
at s. In particular, Ps is a finite collection of geodesic arcs on a sphere, where
each arc is the projection of a maximal visible line segment along an edge of a
polygon in P.

Instead of viewpoints s ∈ R3 and projections to a sphere, we will also work
with the viewpoint at z = −∞, and orthogonal projections to the xy-plane.
Formally, let VP(−∞) be the closure of the set of points t ∈ R3 such that the
relative interior of the vertical downward ray emanating from t is disjoint from
all polygons in P; and let P−∞ be the orthogonal projection of VP(−∞) onto the
xy-plane. Equivalently, P−∞ is the orthogonal projection of the lower envelope
of P to the xy-plane.
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Occlusion diagrams. Let a and b be two Jordan arcs in the plane or on a sphere.
If an endpoint p of a lies in the relative interior of b, we say that a hits b at p;
and b blocks a at p. Viglietta defined spherical occlusion diagrams as follows.

Definition 1 (Viglietta [10]). A spherical occlusion diagram (for short,
SOD) is a finite nonempty collection D of geodesic arcs on the unit sphere S2
that satisfy the following axioms:

(1) Any two arcs in D are internally disjoint.
(2) Each arc in D is blocked by arcs of D at each endpoint.
(3) All arcs in D that hit the same arc of D reach it from the same side.

An SOD D is irreducible if it has no proper subset that is also an SOD. A
swirl in an SOD is a cycle of arcs, each of which hits the next, going either all
clockwise or all counterclockwise. Viglietta [10] proved that every SOD has at
least four convex faces bounded by swirls.

We define planar occlusion diagrams for a collection of line segments and
rays in the plane that abide axioms analogous to Definition 1.

Definition 2. A planar occlusion diagram (for short, POD) is a finite col-
lection S of line segments and rays (for short, segments) in the plane that satisfy
the following axioms:

(1) Any two segments in S are internally disjoint.
(2) Each segment in S is blocked by segments of S at each endpoint.
(3) All segments in S that hit the same segment in S reach it from the same

side.

A POD S is irreducible if it has no proper subset that is also an POD. A swirl
in a POD S is a cycle of segments where each hits the next.

s s

Fig. 1: Left: A polygonal scene P of six pairwise disjoint axis-aligned rectangles
and a viewpoint s that cannot see any vertex. Right: The visibility map Ps on
a unit sphere centered at s is an SOD.
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Realizations. Viglietta [10, Proposition 3] showed that for every polyhedron P,
if a viewpoint s ∈ R3 cannot see any vertices of P is not on the boundary of
P, then the visibility map Ps is an SOD. The same argument generalizes to
polygonal scenes; see Fig. 1 for an example. A realization of an SOD D is a
polygonal scene P with a viewpoint s such that D = Ps. An SOD D is realizable
if it admits a realization.

Similarly, it is easily verified that if the lower envelope of a polygonal scene
P does not contain any vertex of P, then P−∞ is a POD. A realization of a POD
S is a polygonal scene P such that S = P−∞, and S is realizable if it admits a
realization. (Note that a realization of a POD requires unbounded polygons.)

We frequently use the following easy observation. It allows us to assume that
any particular nonvertical polygon in a polygonal scene is in fact horizontal.

Lemma 1. Let P be a polygonal scene in R3, where f ∈ P is a nonvertical
polygon. Then, there exists a nondegenerate affine transformation A : R3 → R3

such that A(f) lies in the xy-plane and A(P)−∞ = P−∞.

Proof. Suppose that f lies in the plane span(f) = {(x, y, z) ∈ R3 : z = αx+βy}.
Then the affine transformation A : R3 → R3, A(x, y, x) = (x, y, z − (αx + βy))
maps span(f) to the xy-plane. Since A preserves the x- and y-coordinates, as
well as the above-below relationship with respect to the z-coordinate, it does not
change the orthogonal projection of the lower envelope, consequently A(P)−∞ =
P−∞, as required. □

v1

v3v2

v4

v5
v6

a

b
c

v6

Fig. 2: A nonregular triangulation T . The triangles ∆v1v2v3, ∆v4v5v6 and ∆abc
are equilateral with a common barycenter. In particular, |v1v4| = |v2v5| = |v3v6|.

Regular triangulations. A planar line graph is said to be regular if it is the
orthogonal projection of the lower envelope of a convex polyhedron in R3 [4]. The
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triangulation T shown in Fig. 2 is known to be nonregular [3, Example 5.1.4]. Our
construction modifies the triangulation T to obtain a POD S (in Section 3). We
show that in any realization of S, any two polygons corresponding to adjacent
triangles in T have a dihedral angle at most π (Section 4). However, if the
dihedral angle of two adjacent triangles in R3 equals π, then they are in fact
coplanar, i.e., they are part of the same face of the convex polyhedron. The
following lemma shows that T remains nonregular even if we merge some (but
not all) of its faces.

Lemma 2. There exists no convex polyhedron P such that (i) the lower envelope
of P has two or more facets; and (ii) the triangulation T depicted in Fig. 2 is a
triangulation of the orthogonal projection of the lower envelope of P.

Proof. Suppose, by contradiction, that such a convex polyhedron P exists. As-
sume that P = conv{v̂1, . . . , v̂6}, where vi ∈ R2 is the orthogonal projection of
v̂i ∈ R3 for i = 1, . . . , 6. We may assume, by Lemma 1, that the facet of the
lower envelope of P that contains ∆v̂4v̂5v̂6 lies in the xy-plane. As the facets of
the lower envelope of P are not coplanar, then v̂1, v̂2 or v̂3 is strictly above the
xy-plane.

Assume w.l.o.g. that vertex v̂1 of P has the highest z-coordinate. Denote by
H the plane spanned by ∆v̂1v̂5v̂4. Since the dihedral angle between ∆v̂1v̂2v̂5
and ∆v̂1v̂5v̂4 is at most π, then v̂2 lies on or above H. If v̂2 ∈ H, then the lines
v̂1v̂4 and v̂2v̂4 meet at a point b̂ ∈ H that projects to b in the xy-plane (Fig. 2).
However, |bv5| < |bv4| implies that slope(b̂v̂2) > slope(b̂v̂4), and this holds even if
v̂2 lies above H. Combined with the fact that |v1v4| = |v2v5|, this further implies
that z(v̂2) > z(v̂1), contradicting our assumption that vertex v̂1 has the highest
z-coordinate. This completes the proof. □

3 Construction of Planar Occlusion Diagrams

In this section, for every sufficiently small ε > 0, we construct a POD S. We
start with the triangulation T in Fig. 2 and modify it in four stages.

Overview. Our construction proceeds in four stages. Each triangular face ∆ of
T will correspond to a convex face ∆′ of S that lies in the interior of ∆ such
that the boundary of ∆′ is within an ε-neighborhood of ∆. The crux of the
construction is to create new convex faces in the ε-neighborhood of edges and
vertices of T . We enclose each vertex of T with a circle of radius ε in Stage 1,
and then enclose each edges of T with a nonconvex region bounded by circular
and parabolic arcs in Stage 2. We replace these regions with convex polygons in
Stage 3. Finally, we perturb the convex tiling into a POD, while creating small
swirls around its vertices.

In all stages of the construction of S, we use auxiliary points, called guide
points, which will not be part of the diagram S. Overall, there are four types of
guide points: S1, G1, and S2 guide points created Stage 1, respectively; and S3

guide points created in Stage 3.
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Stage 1. We start with the triangulation T depicted in Fig. 2 with vertices
v1, . . . , v6. Draw a circle of radius ε > 0 centered at each vertex of T . The radius
ε > 0 must be sufficiently small so that the circles are pairwise disjoint and, for
all i = 1, . . . , 6, a circle centered at vi does not intersect any triangle in T that
is not incident to vi; see Fig. 3.

We place an initial set of points, called S1 and G1 guide points, respectively,
as follows. Let η ∈ (0, ε

2 ) be sufficiently small, to be specified later.
For each vertex v of T and each edge e of T incident to v, place two S1 guide

points on the circle centered at v at distance η from e (one on each side of e).
For every edge e of T , place two G1 guide points on the orthogonal bisector of
e at distance η/2 from e (one on each side of e). The value of η > 0 should be
sufficiently small such that (1) every S1 guide point at distance η from an edge
e lies in a face of T incident to e, and (2) for any two adjacent edges, e1 and e2,
the angle bisector of ∠(e1, e2) separates the guide points associated with e1 and
e2, respectively. We shall impose a third condition on η in Stage 2.

Lastly, we place three additional guide points in the outer face, which will
help extend the construction to the entire plane. For each vertex v of the outer
face of T , place a guide point at the intersection of the circle centered at v and
the angle bisectors of the outer face; we call these three points S2 guide points.

(a) S1, S2, and G1 guide points are
placed on the circles centered at the
vertices of T , and along the orthogo-
nal bisectors of the edges of T .

S1

G1

S2

v

(b) S1 and S2 guide points are placed along
the circle centered at an outer vertex c.

Fig. 3: Guide points placed in Stage 1.

Stage 2. We place parabolic arcs through the guide points placed in Stage 1 as
follows: For each edge e of T , we place two parabolic arcs, one on each side of
e, that contain all guide points associated with e: The axis of symmetry of both
parabolic arcs is the orthogonal bisector of e; the endpoints of each arc are S1

guide points, and its midpoint is a G1 guide point.
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For each vertex v of T , connect all pairs of consecutive guide points along
the circle centered at v by line segments. These segments determine a convex
polygon, called a vertex gadget, inscribed in the circle.

In every triangular face ∆ of T , the three parabolic arcs and three line seg-
ments between pairs of parabolic arcs form a closed curve γ(∆). We claim that
the interior of γ(∆) is a convex region if η > 0 is sufficiently small. It is enough to
show that γ(∆) is convex in the neighborhood of every S1 guide point. Consider
a parabolic arc associated with an edge e of ∆. As η → 0, this arc converges to
a line segment parallel to e, connecting two S1 guide points. Furthermore, the
directions of the tangent lines of the arc at the two S1 guide points converge to
the direction of e. In the limit, we have η = 0 and γ(∆) is a convex hexagon.
Consequently, γ(∆) is already convex for all sufficiently small values of η > 0 in
the neighborhood of every S1 guide point. We can now state the last condition
on η: Let η > 0 be sufficiently small such that (3) the interior of γ(∆) is convex
for every triangular face ∆ of T .

Similarly, for each edge e = vivj of the outer face of T , we also create a
convex region, which is bounded by a parabolic arc associated with e in the
outer face, the two line segments between S1 and S2 guide points in the circles
centered at vi and vj , and by rays emanating from the S2 guide points to infinity.
Specifically, at each S2 guide point, we extend one of the two incident segments
between S1 and S2 guide points into a ray. The result of these modifications are
illustrated in Fig. 4.

Fig. 4: The convex regions in blue are the modified faces of T , and convex poly-
gons centered at the inner and outer vertices of T are in green.
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Stage 3. In the previous stage, we created convex regions in the interior of the
faces of T (one in each triangular face, and three in the outer face), but these
regions do not cover any of the edges of e. In this stage, we place a convex polygon
(called a subface) in each of these previously created region, and subdivide the
complement of the subfaces into convex polygons (called edge gadgets and vertex
gadgets), using additional guide points.

Consider an edge e = vivj of T . By a suitable rotation, we may assume
that e lies on the x-axis, the orthogonal bisector of e is on the y-axis, and
x(vi) < 0 < x(vj). In Stage 2, we created two parabolic arcs, one on each side of
e, such that their endpoints are S1 guide points on the circles centered at vi and
vj , resp., and their middle points are G1 guide points on the y-axis. Along each
parabolic arc, we place four additional guide points with x-coordinates ± 1

6 |vivj |
and ± 1

3 |vivj |, resp., and call them S3 guide points. As a result, there are seven
guide points on each parabola in the pattern S1, S3, S3, G1, S3, S3, and S1; see
Fig. 5.

α1 β2 α2 β3 α3

f2

f1

vi vj

S1

S1

S1

S1

S3

S3
S3

S3 S3

S3
S3

S3

β1 β4

Fig. 5: Additional guide points placed along the edges of a subface, and parabolic
arcs are shown in blue.

We connect every pair of S1 or S3 guide points that have the same x-
coordinate, on opposite sides of e, by a line segment. In each parabolic arc,
we also connect consecutive S1 or S3 guide points by line segments; see Fig. 5.
Note that we do not connect the two G1 points. Five trapezoids are formed by
these line segments, and we call them edge gadgets. Furthermore, we distinguish
between two types of edge gadgets: Alternately α- and β-gadgets along the edge
(i.e., three α-gadgets and two β-gadgets).

We also classify vertex gadgets, created in Stage 2, as β-gadgets. Conse-
quently, each edge of T is covered by seven gadgets: Alternately β- and α-gadgets
along the edge (i.e., three α-gadgets and four β-gadgets); see Fig. 6.

By connecting the S1 and S3 guide points in each parabolic arc, we create a
polygonal path. In each convex region defined in Stage 2, we replace the parabolic
arc by this polygonal path, and obtain a convex polygon, called a subface.
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Note that the subfaces, vertex gadgets, and edge gadgets jointly form a con-
vex subdivision of the entire plane.

α1 β2 α2 β3 α3

f2

f1

1
234

5
6

7
8

9
10 11

12 13
1415

16
17

18 19

20
21

22

23

24

β1 β4

Fig. 6: For a pair of subfaces, the gadgets alternate between β- and α-gadgets.

Stage 4. In the final stage of our construction, we modify the edges of the
edge gadgets created in the previous stage to create a planar occlusion diagram.
We translate or extend some of the edges by a sufficiently small distance δ,
0 < δ < η/2. For each pair of adjacent subfaces and β-gadgets, we perform the
following modifications. Translate the line segment s on the boundary between
the two faces by distance δ > 0 towards the interior of the β-gadget, and extend
the two adjacent edges of the subface until they hit (the translated segment) s;
as shown in Fig. 6. Each such perturbation creates two swirls, each of which is
adjacent to a subface, an α-gadget and a β-gadget.

As a result, each segment is blocked by another segment at each endpoint,
and all segments that hit the same segment reach it from the same side. The
perturbations in Stage 4 ensure these property for all segments on the boundaries
of α- and β-gadgets; and it also holds for the three rays extending to infinity by
construction. By Definition 2, these segments form a POD.

4 Nonrealizability of Planar Occlusion Diagrams

Suppose, for contradiction, that the POD S constructed in Section 3 is realizable
for every ε > 0. First we deduce useful properties for any realization P for a fixed
ε. We then consider the limit of the realizations as ε goes to zero: The subfaces
converge to the triangles of the triangulation T (in Fig. 2), and we show that the
realizations of the subfaces converge to the upper envelop of a convex polyhedron,
contradicting the nonrealizability of T (Theorem 1).
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Properties of a realization P for a fixed ε > 0. For a face f in the POD S, we
denote by f̂ the polygon in the lower envelope of P such that f is the orthogonal
projection of f̂ ; we call f̂ the realization of f . (Note that f̂ is contained in
some polygon F ∈ P, but the vertices of F are not in the lower envelope of P,
consequently f̂ is a proper subset of F .)

z

x

y

f̂2

f̂1

f̂3

f2

f1
f3

a bp

f̂3(p)

f̂1(p)

f̂2(p)

â

b̂

Fig. 7: A point p incident to faces f1, f2, and f3 of a POD. It is the projection
of the points f̂1, f̂2, and f̂3 in a realization in 3-space.

Let a, b ∈ S such that a hits b at point p; refer to Fig. 7. Then p is incident
to three faces of the POD, say f1, f2 and f3 such that f1 and f2 are on opposite
sides of a, and f3 is incident to b. Then p is the orthogonal projection of three
points, that we denote by f̂i(p) ∈ f̂i for i ∈ {1, 2, 3}. Since f̂3(p) occludes both
f̂1(p) and f̂2(p) from the viewpoint z = −∞, then f̂3(p) lies below f̂1(p) and
f̂2(p), or equivalently z(f̂3(p)) ≤ z(f̂1(p)) and z(f̂3(p)) ≤ z(f̂2(p)). For example,
at vertex 1 in Figs. 6–8, the point β̂2(1) in the polygon β̂2 is occluded by the
point α̂2(1) in the polygon γ̂2. Similarly at vertex 3, the point β̂2(3) occludes
the point f̂1(3).
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α1 β2 α2

f2

f1

1
234

5
6

7

8

9
10 11

12

Fig. 8: Labelled vertices of the planar occlusion diagram

In the following lemmas, we analyze the relation between (the realizations
of) two subfaces corresponding to two adjacent triangles of T . Let f1 and f2 be
subfaces lying in two adjacent triangles of T .

Lemma 3. Consider a β-edge gadget adjacent to both subfaces f1 and f2, as
depicted in Fig. 8. Then f̂2(8) or f̂2(12) is below the plane span(f̂1).

Proof. Notice β̂2(4) and β̂2(3) are below span(f̂1). Then at least one of β̂2(1) and
β̂2(6) is also below span(f̂1), because all points on the line segment β̂2(1)β̂2(6)
are collinear, and the z-coordinates monotonically decreases from one end to the
other. Assume first that β̂2(1) is below span(f̂1). Then α̂2(1) is below span(f̂1)

since α̂2(1) is below β̂2(1). Since f̂1(2) is below α̂2(2), then the z-coordinate
monotonically decrease along the line segment α̂2(2)α̂2(12), and so α̂2(12) is
also below span(f̂1). Finally, since f̂2(12) is below α̂2(12), then f̂2(12) is below
span(f̂1). If, however, β̂2(6) is below span(f̂1), then a symmetric argument shows
that f̂2(8) is below span(f̂1). □

By Lemma 3, f̂1 contains a point below span(f̂2), and symmetrically f̂2 con-
tains a point below span(f̂1). Denote by d̂1 ∈ f̂1 and d̂3 ∈ f̂2 the points below
span(f̂2) obtained from the β-gadget β2; and by d̂2 ∈ f̂1 and d̂4 ∈ f̂2 the points
below span(f̂1) obtained from β3. Let d1, . . . , d4, resp., be the orthogonal pro-
jections of d̂1, . . . , d̂4 to the xy-plane; see Fig. 9. Note that the points d1, . . . , d4
are S3 guide points created in Stage 3 of the construction.

Lemma 4. The planes span(f̂1) and span(f̂2) are not parallel.

Proof. Lemma 3 shows that point d̂1 ∈ f̂1 lies below span(f̂1), and point d̂3 ∈
f̂2 lies below span(f̂2). It follows that the planes span(f̂1) and span(f̂2) are
distinct, and neither plane lies entirely above the other. Consequently, span(f̂1)
and span(f̂2) are not parallel. ⊓⊔
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span(f̂2)

span(f̂1)

f̂1 f̂2

ˆ̀

`

f1 f2

Fig. 9: Subfaces f1 and f2 in the xy-plane, and their realizations f̂1 and f̂2 in
R3. Line ℓ̂ = span(f̂1) ∩ span(f̂2), and its orthogonal projection ℓ.

As span(f̂1) and span(f̂2) are nonparallel, by Lemma 4, their intersection
is a line that we denote by ℓ̂ = span(f̂1) ∩ span(f̂2). Let ℓ be the orthogonal
projection of ℓ̂ onto the xy-plane. Note that ℓ may intersect the interior of f1
or f2; see Fig. 10 for an example. Let H1 be the halfplane in the plane span(f̂1)

bounded by the line ℓ̂ that contains the center of f̂1, and similarly, let H2 be the
halfplane in span(f̂2) bounded by the line ℓ̂ that contains the center of f̂2.

Lemma 5. The dihedral angle between H1 and H2 is convex from below.

Proof. Since d̂1, d̂2 ∈ f̂1 are below span(f̂2) and d̂3, d̂4 ∈ f̂2 are below span(f̂1)
in R3, then the points d1, d2 ∈ f1 and d3, d4 ∈ f2 are on opposite sides of the
line ℓ in the xy-plane.

By construction, the center of f1 (resp., f2) is on the same side of ℓ as the
points d1, d2 ∈ f1 (resp., points d3, d4 ∈ f2). By Lemma 3, H1 lies below span(f̂2)

and H2 lies below span(f̂1), which implies that the dihedral angle between H1

and H2 is convex from below, as claimed. ⊓⊔

The limit of realizations as ε goes to zero. In the remainder of this section, we
consider a sequence of PODs S as ε → 0. Note that the POD S and the line
ℓ depend on ε, but the triangulation T does not. Let vi and vj denote the two
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common vertices of the triangles in T that contain the subfaces f1 and f2; and
let L = span(vivj) be the line spanned by the edge vivj .

Lemma 6. The line ℓ converges to L as ε → 0.

Proof. By a suitable rotation, we may assume that vivj lies on the x-axis, the
orthogonal bisector of vivj is the y-axis, x(vi) < 0 < x(vj), and furthermore, f1
and f2 lie above and below the x-axis, respectively. Since the points d1, . . . , d4
are S3 guide points, which lie on two parabolas constructed in Stage 2, then the
absolute values of the x and y-coordinates of these points are bounded by

1

6
|vivj | ≤ |x(di)| <

1

3
|vivj | (1)

and
0 <

η

2
< |y(di)| < η ≤ ε

2
(2)

for all i ∈ {1, . . . , 4}; see Fig. 10. Using (1) and (2), the absolute value of the

f1

f2

vi vj

d1

d3

d2

d4

`
a1

a2

b1

b2

(0, y0)

Fig. 10: A possible location for the line ℓ in blue, that separates points d1, d2 ∈ f1
and d3, d4 ∈ f2.

slope of ℓ is bounded by

0 ≤ slope(ℓ) ≤
∣∣max{slope(d2d3), slope(d1d4)}

∣∣ < 2η
2
3 |vivj |

<
3ε

2 |vivj |
.

This shows that limε→0 slope(ℓ) = 0.
Let y0 be the y-intercept of line ℓ (i.e., (0, y0) is the intersection point of ℓ

with the y-axis); see Fig. 10. Since the line segments d1d2 and d3d4 are above
and below ℓ, resp., and both d1d2 and d3d4 cross the y-axis, then y0 lies between
the y-intercepts of d1d2 and d3d4. Now (2) yields

−ε

2
< min{y(d3), y(d4)} ≤ y0 ≤ max{y(d1), y(d2)} <

ε

2
.

In particular, this implies limε→0 y0 = 0. ⊓⊔
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We are now ready to prove our main results on planar occlusion diagrams.

Theorem 1. There exists a POD that is not realizable.

Proof. Suppose, for contradiction, that every POD is realizable. For every n ∈ N,
let Sn be the POD constructed above with ε = 1

n , and let Pn be its realization
(that is, Sn is the orthogonal projection of the lower envelope of Pn). Let Hn ∈
Pn denote the face that corresponds to the subface in the central triangle in T ;
and let Un ⊂ R3 denote the set of all points in Pn that orthogonally project to
segment endpoints in Sn. By Lemma 4, the polygons in Pn are not all coplanar.
We may assume, by a suitable affine transformation, that Hn lies in the xy-
plane, the z-coordinates of all point in Un are in the interval [−1, 1] and the
z-coordinate of at least one point in Un is in {−1, 1} for all n ∈ N.

By compactness, there exists a subsequence (nk)
∞
k=1 such that the point set

Unk
converges as k → ∞. Note that the realization of each subface in Pnk

is determined by Unk
. Let F denote the set of subfaces in the limit; and let

Q = conv(F) be the convex hull of all points in Q.
Consider two subfaces, f1 and f2, that correspond to adjacent triangles in

T . In the limit, f̂1 and f̂2 are adjacent triangles in R3, and by Lemma 5 their
dihedral angle (from below) is at most π (they might be coplanar). That is, the
triangles in F form the upper envelope of Q, where each facet of Q is the union
of one or more triangles in F . In particular, T is a triangulation of the orthogonal
projection of the upper envelope of Q onto the xy-plane. By assumption, one
facet of the upper envelop lies in the xy-plane and another facet contains a point
with nonzero z-coordinate. This implies that the upper envelope of Q consists
of two or more facets, but a triangulation of its orthogonal projection onto the
xy-plane is the triangulation T in Fig. 2, contradicting Lemma 2. □

5 Nonrealizability of Spherical Occlusion Diagrams

We are now ready to prove our main result.

Theorem 2. There exists an SOD that is not realizable.

Proof. By Theorem 1, there exists a nonrealizable POD S, which is a POD
constructed in Section 3 for a sufficiently small ε > 0. We construct a SOD
D as follows. Let R be a sufficiently large equilateral triangle that contains all
segment endpoints of P.

Let D0 be an SOD depicted in Fig. 1. It is the visibility map of six disjoint
axis-aligned rectangles along the facets of a cube in R3. Note that D0 contains
eight triangular swirls. We may assume, by symmetry, that all swirls are equi-
lateral (spherical) triangles. Let R0 be one of the swirls of D0.

There exists a suitable spherical projection ϱ that maps R to R0. Indeed,
assume that P lies in the plane H : z = −1 in R3, the barycenter of the triangle
R is (0, 0,−1) ∈ H, and the (spherical) barycenter of R0 is also (0, 0,−1) ∈ S2.
Then the stereographic projection of H to S2 maps R to an equilateral (spherical)
triangle in S2. A suitable scaling followed by this stereographic projection ensures
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that R is mapped to R0. Now ϱ maps the segments of S within R into a set D1

of geodesic arcs in R0. Now D = D0 ∪ D1 is an SOD D.
We claim that D is not realizable. Suppose, for contradiction, that D = Ps

for a polygonal scene P and a viewpoint s ∈ R3. Let Q ⊂ P be the subset of
polygons that correspond to the arcs in D1. A projective transformation that
maps s to z = −∞ will also map Q to a polygonal scene Q′. Now Q′ realizes
the POD S, contradicting the choice of S. □

By modifying the construction above, we also prove Viglietta’s conjecture [10,
Conjecture 5] about irreducible SODs.

Theorem 3. There exists an irreducible SOD that is not realizable.

Proof. In Section 3, we have constructed a nonrealizable POD S. By construc-
tion, S has rotational symmetry through angle 2π

3 around the origin, and contains
precisely three rays, which are contained in three nonconcurrent lines. Let S ′ be
the image of S reflected in a line. We construct an SOD D as follows. Let D0

be an SOD depicted in Fig. 1, that consists of 12 arcs, forming 4 clockwise and
4 counterclockwise swirls, and has reflection symmetry in all three coordinate
planes. Use spherical projections to map a copy of S to each clockwise swirl,
and a copy of S ′ to each counterclockwise swirl, such that the three rays in each
copy of a POD are mapped to the three arcs of the swirl. We obtain an SOD D.

We claim that D is irreducible and nonrealizable. Suppose, for contradiction,
that D = Ps for a polygonal scene P and a viewpoint s ∈ R3. Let Q ⊂ P be the
subset of polygons that correspond to the arcs in one copy of S. A projective
transformation that maps s to z = −∞ will also map Q to a polygonal scene
Q′. Now Q′ realizes the POD S, contradicting the choice of S. □

6 Conclusions

We have shown that spherical occlusion diagrams (SODs) are not equivalent
to visibility maps in 3-space. Our result raises several open problems: Is there a
simple (axiomatic) characterization of visibility maps? Can one decide efficiently
whether a given SOD is a visibility map? If so, can one find a realization effi-
ciently? What is the maximum (combinatorial, topological, or bit) complexity
of the realization space for an SOD with n arcs for a given positive integer n?
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