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Simultaneously flippable edges in triangulations
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Abstract. We show that every straight-line triangulation on n vertices contains at least (n−4)/5 simul-
taneously flippable edges. This bound is the best possible, and resolves an open problem by Galtier et al. .

Introduction A (geometric) triangulation of a point set P is a planar straight line
graph with vertex set P such that every bounded face is a triangle, and the outer face
is the exterior of the convex hull of P . An edge e of a triangulation is flippable if it is
adjacent to two triangles, whose union is a convex quadrilateral Q(e). A set E of edges
in a triangulation are simultaneously flippable if each edge in E is flippable, and the
quadrilaterals Q(e), e ∈ E, are pairwise interior disjoint.

For a triangulation TP of a point set P , let fsim(T ) denote the the maximum number
of simultaneously flippable edges in TP , and let fsim(n) = minTP :|P |=n fsim(TP ) be the
minimum of fsim(T ) over all n-element point sets in general position in the plane. The
value of fsim(n) played a key role in recent results on the number of various classes planar
straight line graph embedded on given point sets [2, 4]. Hurtado et al. [5] proved that
every triangulation on n vertices admits at least (n−4)/2 flippable edges, and this bound
cannot be improved in general. Galtier et al. [3] proved that fsim(n) ≥ (n − 4)/6, and
there are triangulations TP with |P | = n such that fsim(TP ) ≤ (n− 4)/5, which the best
possible. In this note we improve the lower bound to fsim(n) ≥ (n− 4)/5. This resolves
an open problem posed in [3] and restated in [1].

Lower bound Fix a set P of n points in general position in the plane, h of which lie
on the boundary of the convex hull, and fix a triangulation T = TP . Then T has exactly
3n− h− 3 edges and 2n− h− 2 bounded faces.

Separable edges. Following the terminology in [4], we say that an edge e = uv of
the triangulation is separable at vertex u iff there is a line `u through u such that uv is
the only edge incident to u on one side of `u. We use the following observations from [5]:
An edge uv of T is flippable iff it is separable at neither endpoint. If u is a hull vertex,
then only the two incident hull edges are separable at u. Suppose now that u is a vertex
in the interior of the convex hull. If u has degree 3, then all three incident edges are
separable at u. If u has degree 4 or higher, then at most two edges are separable at u
and these edges must be consecutive in the rotation of u.

Similarly to [5], we assign every non-flippable edge e to an incident vertex at which it
is separable. If e lies on the boundary of the convex hull, assign e to its counterclockwise
first hull vertex. If e is incident to an interior vertex of degree 3, then assign e to this
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vertex. Otherwise assign e to one of its endpoints at which it is separable (breaking ties
arbitrarily).

Based on the above observations, we can now distinguish five types of vertices. Let h
be the number of hull vertices (with h ≥ 3) and let n3 be the number of interior vertices
of degree 3. Denote by n4,0, n4,1, and n4,2 the number of interior vertices of degree 4 or
higher that are assigned to 0, 1, and 2 non-flippable edges, respectively. We have

(1) n = h + n4,2 + n4,1 + n4,0 + n3.

Using this notation, the number of non-flippable edges is exactly h + 3n3 + 2n4,2 + n4,1.
Denoting by f the total number of flippable edges in T , we use (1) to get f = (3n− h−
3)− (h + 3n3 + 2n4,2 + n4,1), or

(2) f = h + n4,2 + 2n4,1 + 3n4,0 − 3.

Coloring argument. Galtier et al. [3] proved that every set of flippable edges in a
triangulation is 3-colorable such that each color class is simultaneously flippable. This
implies, in particular, that every set of k flippable edges in a triangulation contains
a subset of at least k/3 simultaneously flippable edges. This result, combined with
a lower bound of (n − 4)/2 on the total number of flippable edges immediately gives
fsim ≥ (n− 4)/6. We improve this lower bound to fsim(n) ≥ (n− 4)/5.

If f ≥ 3d(n− 4)/5e − 2, then the above 3-coloring argument implies that the largest
color classes contains at least d(n− 4)/5e simultaneously flippable edges, as required. In
the remainder of the proof, we assume that

(3) f ≤ 3
⌈

n− 4
5

⌉
− 3 ≤ 3n

5
− 3.

Recall that we have f ≥ 1
2(n− 4) by the result of Hurtado et al. [5]. So the number

of flippable edges must be in the range 0.5n− 2 ≤ f < 0.6n− 3. Combining (2) and (3),
we have

(4)
3
5
n ≥ h + n4,2 + 2n4,1 + 3n4,0.

We apply the 3-coloring result by Galtier et al. [3] only for a subset of the flippable
edges. We call a flippable edge e isolated if the convex quadrilateral Q(e) is bounded by 4
non-flippable edges. It is clear that an isolated flippable edge is simultaneously flippable
with any other flippable edge. Let f0 and f1 denote the number of isolated and non-
isolated flippable edges, respectively, with f = f0+f1. Applying the 3-coloring argument
for the non-isolated flippable edges only, the number of simultaneously flippable edges is
bounded by

(5) fsim ≥ f0 +
f1

3
= (f − f1) +

f1

3
= f − 2

3
f1.

An auxiliary triangulation. Similarly to Hurtado et al. [5] and Hoffmann et al. [4],
we use an auxiliary triangulation T̂ . We construct T̂ from T as follows:

(1) Add an auxiliary vertex w in the exterior of the convex hull, and connect it to
all hull vertices.

(2) Remove all interior vertices of degree 3 (and all incident edges).

Notice that only nonflippable edges have been deleted from T . In the triangulation T̂ ,
the number of vertices is n− n3 + 1 = h + n4,0 + n4,1 + n4,2 + 1. By Euler’s formula, the
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number of faces (including the unbounded face) is

(6) m = 2(n− n3 + 1)− 4 = 2h + 2n4,2 + 2n4,1 + 2n4,0 − 2.

We 2-color the faces of T̂ as follows: let all triangles incident to vertex w be white;
let all triangles obtained by deleting a vertex of degree 3 be white; for each of the n4,2

vertices (which have degree 4 or higher in T and two assigned consecutive separable
edges), let the triangle adjacent to both nonflippable edges be white; finally, color all
remaining triangles of T̂ gray. See Figure 1 for an example.

w

⇒ ⇒

w

T
̂
T 2-colored

̂
T

Figure 1. The 2-colored auxiliary triangulation T̂ of a triangulation T .

Under this coloring, the number of white faces is mblue = h + n4,2 + n3. Using (6),
the number of gray faces is

mred = m−mblue

= (2h + 2n4,2 + 2n4,1 + 2n4,0 − 2)− (h + n4,2 + n3)
= h + n4,2 + 2n4,1 + 2n4,0 − n3 − 2.(7)

Putting it all together. Observe that if a flippable edge e of T lies on the common
boundary of two white triangles in the auxiliary graph T̂ , then e is isolated. That is, if
e is a nonisolated flippable edge in T , then it is on the boundary of a gray triangle in T̂ .
Since every gray triangle has three edges, the number of nonisolated flippable edges in T
is at most 3mred. Substituting this into our bound (7) on the number of simultaneously
flippable edges, we have

fsim ≥ f − 2
3
f1

≥ f − 2mred

= (h + n4,2 + 2n4,1 + 3n4,0 − 3)− 2(h + n4,2 + 2n4,1 + 2n4,0 − 2− n3)
= 2n3 − h− n4,2 − 2n4,1 − n4,0 + 1.(8)

Finally, combining twice (1) minus three times (4), we obtain

2n− 3 · 3n

5
≤ 2(h + n4,2 + n4,1 + n4,0 + n3)− 3(h + n4,2 + 2n4,1 + 3n4,0)

n

5
≤ 2n3 − h− n4,2 − 4n4,1 − 7n4,0

< 2n3 − h− n4,2 − 2n4,1 − n4,0 + 1
≤ fsim.(9)

Under the condition (3), we have proved a lower bound of fsim > n/5; otherwise we have
fsim ≥ (n− 4)/5, as required.
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Upper bound constructions In this section we construct an infinite family of geo-
metric triangulations with at most (n− 4)/5 simultaneously flippable edges. This family
includes all triangulations constructed by Galtier et al. [3]. First observe that a straight
line drawing of K4 has no flippable edge. We introduce two operations that each increase
the number of vertices by 5, and the maximum number of simultaneously flippable edges
by one.

⇒ ⇒

Figure 2. The two operations applied successively to K4.

One operation replaces an interior vertex of degree 3 by a configuration of 6 vertices
as shown at left in Fig. 2. The other operation adds 5 vertices in a close neighborhood
of a hull edge as shown at right in Fig. 2. Note that both operations maintain the
property that the triangles adjacent to the convex hull have no flippable edges. Each
operation creates three new flippable edges, which form a triangle, so no two of them are
simultaneously flippable. Each operation increases h+n4,2 by 3 and n3 by 2, as expected
based on the previous section.

Let Fsim denote the family of all geometric triangulations obtained from K4 via
applying an arbitrary sequence of the two operations. Then every triangulation T ∈ Fsim

on n vertices has at most (n − 4)/5 simultaneously flippable edges, attaining our lower
bound for fsim(n). We note that all upper bound constructions by Galtier et al. [3] can
be obtained by applying our 2nd operation successively to all sides, starting from K4.
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