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Abstract1

We study vertex-labeled graphs that can be embedded on a given point set such that every edge2

is a polyline with k bends per edge, where k ∈ N. It is shown that on every n-element point set in3

the plane, at most exp(O(n log(2 + k))) labeled graphs can be embedded using polyline edges with k4

bends per edge, and this bound is the best possible. This is the first exponential upper bound for the5

number of labeled plane graphs where the edges are polylines of constant complexity. Standard tools6

developed for the enumeration of straight-line graphs, such as triangulations and crossing numbers, do7

not seem applicable in this scenario. Furthermore, the exponential upper bound does not carry over to8

other popular relaxations of straight-line edges: for example, the number of labeled planar graphs that9

admit an embedding with x-monotone edges on n points is super-exponential.10

1 Introduction11

A plane graph is an abstract graph G = (V,E) together with an embedding into the Euclidean plane12

that maps the vertices in V to distinct points in R2, and maps the edges in E to Jordan arcs between the13

corresponding vertices such that any two arcs can intersect only at a common endpoint. A plane straight-line14

graph is a plane graph where the edges are mapped to straight-line segments.15

Determining the number of (labeled) plane straight-line graphs that can be embedded on a finite vertex16

set V ⊂ R2 has received continued attention, motivated by randomized algorithms on the configuration17

space of such graphs. Ajtai et al. [2] proved that every set of n points in the plane admits at most O(cn)18

plane straight-line graphs for some absolute constant c < 1013. This upper bound has successively been19

improved over the last decades: the current best upper bound O(187.53n) is due to Sharir and Sheffer [32],20

using a so-called cross-graph charging scheme [30, 33]. The current best lower bound, Ω(41.18n), is due21

to Aichholzer et al. [1]. The quest for finding the maximum number of plane straight-line graphs and other22

common graphs (such as triangulations, Hamilton cycles, and matchings) continues with the search for23

extremal configurations and efficient algorithms for given point sets [3]. All results in this area rely on24

the simple fact that a plane straight-line graph contains at most one diagonal for any four points in convex25

position (Fig. 1). This fact is a crucial ingredient of (i) the celebrated Crossing Lemma by Ajtai et al. [2],26

(ii) the notion of edge flips in geometric triangulations [24], and also (iii) the cross-graph charging scheme27

in [30, 33].28

In this paper, we study the maximum number of graphs on n (labeled) vertices that admit a plane em-29

bedding on n given points with polyline edges with k bends per edge for k > 0. An edge with k bends30

(or k-bend edge, for short) is a polyline that consists of k + 1 line segments. For a set S of n points in31

Euclidean plane, and an integer k ≥ 0, we denote by Bk(S) the family of (labeled) graphs that admit a32

plane embedding with k-bend edges such that the vertices are mapped onto S. We may identify the labeled33

vertices with the corresponding points in the plane, and denote a graph G ∈ Bk(S) by G = (S,E). For34

example, G ∈ B0(S) if it is a planar straight-line graph on the vertex set S.35
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2 1 Introduction

Figure 1: Left: the diagonals of a convex quadrilateral cross. Middle: both diagonals can be realized with polylines
with (at most) one bend per edge. Right: K4 on four collinear points can be embedded with polylines with one bend
per edge.

For n, k ∈ N, let bk(n) = max|S|=n |Bk(S)|, that is, the maximum cardinality of Bk(S) over all n-36

element point sets S. The main result of the paper is the following.37

Theorem 1 There is an absolute constant c > 0 such that bk(n) ≤ 2cn log(2+k) for all k, n ∈ N.38

Previously, an exponential upper bound was known only in the case k = 0 (cf. [2, 32]). Pach and39

Wenger [29] showed that every n-vertex (labeled) planar graph embeds on every n-element point set with40

at most 120n bends per edge. They also constructed (labeled) planar graphs and point sets such that any41

plane embedding with polyline edges requires at least Ω(n2) bends in total. Thus their bound on the total42

number of bends is the best possible apart from constant factors. The number of planar graphs on n labeled43

vertices is known to be Θ(n−7/2γn · n!), where γ ≈ 22.27 [21]. Combined with [29], this implies that the44

number of n-vertex labeled graphs that embed on an n-element point set with 120n-bend edges is 2O(n logn).45

Theorem 1 improves on this bound when k = o(n).46

The following simple construction shows that Theorem 1 is the best possible, apart from the constant47

c. Assume that n ≥ k ≥ 122. Given a set S of n points in the plane, partition the plane by parallel48

lines into strips, each containing n′ = bk/122c points with the possible exception of one strip. In each strip,49

independently, all planar graphs can be realized with at most 120+2 bends per edge, using the result of Pach50

and Wenger [29], but truncating the edges at their first and last intersection points (if any) with the parallel51

lines on the boundary of the strips. The number of planar graphs on n′ vertices is 2Θ(n′ logn′) = 2Θ(k log k).52

Combining the graphs in bn/n′c = Θ(n/k) strips, each containing n′ points, we obtain
(
2Θ(k log k)

)n/k
=53

2Θ(n log k) labeled planar graphs.54

Generalizations. Our proof for Theorem 1 extends to a more general setting: we can formulate it in55

terms of the total number of bends, and in terms of topological equivalence classes of plane graphs. Let56

G0 = (S,E0) and G1 = (S,E1) be two plane graphs on the same vertex set S ⊂ R2 such that the57

corresponding abstract graphs are isomorphic (but the embedding of the edges may be different). The plane58

graphs G0 and G1 are isotopic if there is a continuous family of plane graphs (Gt)t∈[0,1] between G0 and59

G1 (where the edges are deformed continuously and remain interior-disjoint). Equivalently, G0 and G1 are60

isotopic if they have the same outer face and the same rotation system (that is, the counterclockwise orders61

of incident edges are the same at each vertex); see [23]. Isotopy is an equivalence relation on the plane62

graphs on the vertex set S. For K ∈ N, let TK(S) denote the set of isotopy classes of plane graphs on S63

that have polyline edges with a total of at most K bends. For example, T0(S) is the set of isotopy classes of64

planar straight-line graphs on S.65

For n,K ∈ N, let tn(K) = max|S|=n |TK(S)|, that is, the maximum cardinality of TK(S) over all66

n-element point sets S. We prove the following generalization of Theorem 1.67

Theorem 2 There is an absolute constant c > 0 such that tK(n) ≤ 2cn log(2+K/n) for all K,n ∈ N.68
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Comparison to the Unlabeled Setting. If we are interested in the number of unlabeled graphs that embed69

into a given point set using polyline edges, we have quite a different picture. In this case, a vertex of graphG70

may be mapped to any point in S. Kaufmann and Wiese [25] proved that every n-vertex planar graph admits71

an embedding into every set of n points in the plane with 2-bend edges. Everett et al. [20] constructed an n-72

element point set Sn such that every n-vertex planar graph admits an embedding into Sn with 1-bend edges.73

In both cases, we cannot choose arbitrarily which vertex is mapped to which point. Note, however, that the74

number of pairwise nonisomorphic n-vertex planar graphs is only singly-exponential in n: Turán [35] gave75

an upper bound of 212n based on succinct representations of planar graphs, which was later improved to76

24.91n [8]. Hence, the results in [20, 25] yield only an exponential lower bound (and no upper bound) for77

the number of labeled graphs that embed on n points with 1- or 2-bend edges, respectively.78

Triangulations. Triangulations play a crucial role in counting plane straight-line graphs: for example,79

bounds for Hamilton cycles and spanning trees on a point set have been derived from the number of triangu-80

lations (by finding subgraphs of a triangulation, ignoring the location of the vertices). This partly justifies the81

continued interest in triangulations on point sets [1, 16, 31]. We show that this important tool is unavailable82

when dealing with plane graphs embedded with polyline edges, since edge-maximal graphs exist in B1(S)83

that are not subgraphs of triangulations.84

A combinatorial triangulation is an edge-maximal planar graph. By Euler’s formula, if G = (V,E) is85

a combinatorial triangulation, then |E| = 3|V | − 6 for |V | ≥ 3; and every face in a plane embedding of86

G is bounded by precisely three edges. A geometric triangulation is an edge-maximal planar straight-line87

graph (that is, no new edges can be added to the given straight-line embedding); here all bounded faces are88

triangles, and the outer face is the complement of the convex hull of S. That is, in an edge-maximal graph89

in B0(S), all bounded faces are triangles. We show that the bounded faces of an edge-maximal graph in90

B1(S) are not necessarily triangles.91

Theorem 3 For every f, h ∈ N, with f ≥ 4 and h ≥ 1, there is a point set S and a graph G = (S,E) such92

that G is an edge-maximal graph in B1(S) and every 1-bend plane embedding of G has at least h bounded93

faces each with f edges.94

Monotone embeddings. Theorem 1 gives an upper bound on the number of n-vertex labeled planar95

graphs that admit an embedding on n points in the plane if the edges are restricted to polylines with at96

most k interior vertices (bends). Can we derive a similar result if we allow Jordan arcs with some other97

combinatorial or geometric restrictions? The proof of Theorem 1 is likely to go through if replace the98

straight-line segments in the polylines by convex arcs (a arc in R2 is called convex if it lies on the boundary99

of a convex body). A possible further relaxation would replace the straight-line segments by monotone arcs,100

but in this case, we can show that the exponential upper bound does not hold anymore.101

A monotone plane graph is a plane graph where every edge is embedded as an x-monotone Jordan arc. It102

is a popular generalization of planar straight-line graphs. However, the number of labeled graphs that admit103

a monotone plane embedding on a given point set is already super-exponential. Note that every monotone104

plane graph can be triangulated (i.e., every face with 4 or more vertices can be subdivided by an x-monotone105

diagonal), as shown by Pach and G. Tóth [28].106

Theorem 4 For every set S of n points in the plane, no two on a vertical line, at least b(n− 2)/2c! labeled107

planar graphs with n ≥ 4 vertices admit a monotone embedding on S.108

Recently, Angelini et al. [4] considered bimonotone drawings, where each edge is embedded as an x-109

and y-monotone Jordan arc. They classify plane graphs that admit such an embedding, and show that if the110

embedding is possible, then one bend per edge suffices.111
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Organization. We review useful tools from computational topology on homotopic shortest path with re-112

spect to a discrete point set S in the plane in Section 2. We prove Theorems 1 and 2 in Section 3, using an113

efficient combinatorial representation of homotopic shortest paths. We construct plane graphs with polyline114

edges that cannot be triangulated using polylines of the same number of bends in Section 4; and we consider115

monotone plane graphs in Section 5. We conclude in Section 6 with a few open problems.116

2 Preliminaries117

The proof of Theorem 1 is based on a reduction to plane straight-line graphs. Given a plane graph G =118

(S,E) with k bends per edge, we replace each edge with a homotopic shortest path. The union of the119

shortest paths forms a plane straight-line graphG′ = (S,E′) on S. Note that the shortest paths may overlap,120

and the same straight-line graph G′ may be obtained in this way from several k-bend plane graphs on S.121

Theorem 1 follows from an 2O(n) bound on the number of plane straight-line graphs G = (S,E′) [32],122

combined with an 2O(n log(2+k)) bound on the number of k-bend plane graphs that correspond to a common123

straight-line graph G′ = (S,E′). The latter bound is obtained by encoding the shortest paths homotopic to124

the k-bend edges of G with O(n log(2 + k)) bits of information.125

Efficient encodings of various combinatorial structures have been studied for decades in the context of126

succinct representation. Bereg [7] showed that the family of (possibly crossing) simple k-bend polylines127

between the same two points (i.e., parallel edges) among n points in the plane can be encoded by a weighted128

complete graph Kn on the point set, where the weight of each edge is the number of times the homotopic129

shortest paths traverse that edge. He shows thatO(n log(n+k)) bits of information suffice for the encoding;130

and this bound is the best possible for k = Ω(n1+ε) for all ε > 0. Theorem 1 offers a better bound when the131

polylines may have different endpoints but are pairwise noncrossing (i.e., they are edges of a plane graph)132

and k = o(n). The main technical difficulty is to encode pairwise noncrossing polylines efficiently. For133

1-bend embeddings, we use combinatorial properties of homotopic shortest paths; and for k ≥ 2, we reduce134

k-bend graphs to 1-bend graphs.135

Let us note that the following naı̈ve idea for a direct reduction to plane straight-line graphs does not yield136

any reasonable bound. Given a plane graphG = (S,E) with k-bend edges, we could introduce new vertices137

at each bend point, and obtain a plane straight-line graph on at most n+ (3n− 6)k = O(kn) vertices. Any138

set of m = O(kn) points in the plane admits O(187.53m) = 2O(kn) plane straight-line graphs [32]. This139

bound assumes that the set of bend points is fixed. However, each bend point can be positioned at Θ(m4)140

combinatorially different locations relative tom points in the plane in general position (the
(
m
2

)
lines spanned141

by m points in general position form an arrangement with Θ(m4) cells). Guessing successively the relative142

positions for m = Θ(kn) unlabeled bend points leads to 1
m!

∏m−1
i=0 Θ((n+ i)4) = 2Θ(kn logn) possibilities.143

Thus this approach gives an upper bound of bk(n) = 2O(kn logn), which is much worse than Theorem 1.144

2.1 Geodesic Representation145

An arc in Euclidean plane is a continuous function γ : [0, 1] → R2; an arc is simple if γ is injective. Let146

S be a set of n points in the plane, no three of which are collinear (this assumption is not essential for the147

argument, and can be removed by standard tools, e.g., virtual perturbation). The set R2 \ S is called the148

punctured plane. We denote by Γ(S) the set of all arcs between distinct points in S, and by Γ0(S) ⊂ Γ(S)149

the set of arcs that do not pass through any point in S (i.e., γ(t) 6∈ S for 0 < t < 1). Two arcs γ1, γ2 ∈ Γ(S)150

between the same two points s1, s2 ∈ S are homotopic (with respect to S) if there is a continuous function151

f : [0, 1]2 → R2 such that no interior point in (0, 1)2 is mapped to any point in S, and on the boundary of152

[0, 1]2, we have f(0, t) = γ1(t), f(1, t) = γ2(t), f(t, 0) = s1, and f(t, 1) = s2 for all t ∈ [0, 1]. Intuitively,153

γ1 can be continuously deformed into γ2 such that the two endpoints remain fixed, and the intermediate154

arcs are do not pass through any point in S (however, γ1 or γ2 may pass through points in S). Note that155
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homotopy is an equivalence relation over Γ0(S); but it is not transitive over Γ(S). For an arc γ ∈ Γ0(S), let156

γ̂ ∈ Γ(S) be the shortest arc homotopic to γ.157

Finding the shortest arc homotopic to a given polyline with respect to a point set S has been studied158

intensely. Hershberger and Snoeyink [22] gave an efficient algorithm for computing γ̂ for a given simple159

polyline γ. Efrat et al. [18] show how to compute γ̂ for all γ in a set of polygonal arcs with distinct endpoints160

simultaneously. Later Bereg [6] improved the runtime of this algorithm: for a family of pairwise disjoint161

simple polylines, the runtime is O(n log1+ε n + kin log n + kout) for any fixed ε > 0, where kin and kout162

are the total number of edges of the input and output arcs, respectively. Colin de Verdière [11, 14] extended163

these techniques to pairwise interior-disjoint polylines, which may share endpoints, including a polyline164

embedding of a graph. Generalizations to nonsimple arcs and to surfaces of higher genus have also been165

studied (see [12, 13, 19] and the references therein).166

Basic properties of shortest paths. For a plane graph G = (S,E) with polyline edges, let Ê = {ê :167

e ∈ E} be a set of homotopic shortest arcs for all edges in E. We briefly review well-known properties168

of homotopic shortest paths. If γ is a simple arc in the plane, then γ̂ is a polyline with all interior vertices169

(i.e., bend points) in S. The path γ̂ need not be a simple path: it may have repeated vertices. However, γ̂ is170

weakly simple in the sense that for every ε > 0, the interior vertices of all shortest paths can be perturbed by171

at most ε to obtain a simple path in Γ0(S) that is homotopic to γ. (See also [10] for an equivalent definition172

in terms of the Fréchet distance). In particular, this implies that the path γ̂ has no self-crossings.173

Furthermore, for every ε > 0 the interior vertices of all shortest paths in Ê can be simultaneously per-174

turbed by at most ε to obtain a plane graph on S that is isotopic to G [11]. In particular, no two arcs in Ê175

cross each other; see Fig. 2(a) and (c) for an example.176

Angles of shortest paths. An angular domain (for short, angle or wedge) ∠(a, b, c) is the set of points177

swept when we rotate the ray
−→
ba to

−→
bc counterclockwise about b. Two angles with the same apex, ∠(a1, b, c1)178

and ∠(a2, b, c2), are called nested if one contains the other. A vertex s ∈ S in a plane straight-line graph on179

S is called pointed if all edges incident to s lie in a closed halfplane bounded by a line through s.180

Consider a shortest path γ̂ ∈ Ê, γ̂ = (s1, . . . , sm), with possible repeated vertices. At each interior vertex181

si, 1 < i < m, the two incident edges determine two angles: ∠(si−1, si, si+1) and ∠(si+1, si, si−1). One182

of them is convex and the other is reflex since no three points in S are collinear. Vertices s1 and sm are each183

incident to an endsegment of γ̂.184

Lemma 5 At every s ∈ S, the convex angles of the shortest paths through s are nested, and they all contain185

the endsegments of the shortest paths incident to s.186

Proof. We use a common perturbation of the shortest paths in Ê to homotopic simple paths [11]. For187

the first claim, let (ai−1, ai, ai+1) and (bj−1, bj , bj+1) be contained in some shortest paths in Ê such that188

s = ai = bj , and both ∠(ai−1, ai, ai+1) and ∠(bj−1, bj , bj+1) are convex. We need to show that the angular189

domains ∠(ai−1, ai, ai+1) and ∠(bj−1, bj , bj+1) are nested.190

Let d be the minimum distance between any point in S and a line passing through two other points191

in S; and let ε = d/(2n). An ε-perturbation of Ê contains two noncrossing paths (ãi−1, ãi, ãi+1) and192

(b̃j−1, b̃j , b̃j+1), where the points ãi−1, ãi, ãi+1, b̃j−1, b̃j , and b̃j+1 are each within distance ε from ai−1, ai,193

aj+1, bj−1, bj , and bj+1. The perturbed angles ∠(ãi−1, ãi, ãi+1) and ∠(b̃j−1, b̃j , b̃j+1) are convex due to the194

choice of ε. Point s = ai = bj lies in the interior of both convex angles, otherwise the path (ai−1, ai, ai+1)195

or (bj−1, bj , bj+1) could be replaced by a shorter homotopic path. Consequently, one of ∠(ai−1, ai, ai+1)196

and ∠(bj−1, bj , bj+1) contains the other.197

For the second claim, let (a1, a2) be an endsegment of a path in Ê, and let (bj−1, bj , bj+1) be part of some198

shortest path in Ê such that s = a1 = bj , and ∠(bj−1, bj , bj+1) is convex. In an ε-perturbation, point s lies199
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in the interior of ∠(b̃j−1, b̃j , b̃j+1), and the path (b̃j−1, b̃j , b̃j+1) is disjoint from (a1, ã2). Since the paths are200

noncrossing, the angular domain ∠(bj−1, bj , bj+1) contains the endsegment a1a2. 2201

Corollary 6 If s ∈ S is an interior vertex of ê, for some e ∈ E, then s is pointed in G′ = (S,E′).202

2.2 Encoding Homotopic Shortest Paths203

In this section, we define two combinatorial representations of the homotopic shortest paths Ê, and a corre-204

sponding routing diagram isotopic to G, for a plane graph G = (S,E).205

Image Graph and Routing Diagram. Consider a plane graph G = (S,E). Let E′ be the union of all206

edges of the shortest paths in Ê = {ê : e ∈ E}. We define the image graph of G to be G′ = (S,E′).207

By construction, G′ is a plane straight-line graph on the vertex set S; see Fig. 2(a-b) for an example. Each208

shortest path in Ê is a path in the image graph G′, but not necessarily a simple path.209

G = (S,E)
G′ = (S,E′)

G′ = (S,E′)G′ = (S,E′)

(a) (b)

(c) (d)

Figure 2: (a) A plane graph G = (S,E) with 2-bend edges. (b) The graph G′ = (S,E′) of the shortest homotopic
paths. (c) The shortest homotopic paths are perturbed into interior-disjoint arcs in a routing diagram. (d) The signature
of a routing diagram is uniquely determined by the local topology in the disks Ds.

For every ε > 0, the ε-strip-system of the image graph G′ = (S,E′) consists of the following regions:210

• For every point s ∈ S, let Ds be a disk of radius ε centered at s.211

• For every edge st ∈ E′, let the corridor Nst be the set of points at distance at most ε2 from the line212

segment st, outside of the disks Ds and Dt.213

Denote by Uε the union of all these disks and corridors. Let ε > 0 be sufficiently small such that the disks214

Ds are pairwise disjoint, the corridors N(uv) are pairwise disjoint, and every corridor Nst of a segment215

intersects only the disks at its endpoints Ds and Dt.216
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A routing diagram (Fig. 2(c)) is a simultaneous perturbation of the edges in Ê into a plane graph isotopic217

to G = (S,E) such that every shortest path ê = (s1, . . . , sm) is replaced by a polygonal path in the ε-strip-218

system Uε, that contains precisely one line segment in every disk Dsi , i = 1, . . . ,m, and every corridor219

Nsisi+1 , i = 1, . . . ,m− 1. Similar concepts have previously been used in [10, 15, 17, 27].220

2.3 Cross-Metric Representation221

Let G = (S,E) be a plane graph with polyline edges, e ∈ E, and ê = (s1, . . . , sm). The polylines e and ê222

may cross several times. We show how to decompose e and ê into noncrossing homotopic subpaths, which223

will be used in Section 3.2.224

We rely on a combinatorial representation of the arcs in Γ0(S), the so-called cross-metric surface model225

[11, 12]. Let T = (S,E′′) be an arbitrary triangulation of the image graph G′, together with a ray r0 (an226

“infinite edge”) from the leftmost vertex s0 ∈ S to infinity parallel to the negative x-axis. Then all faces227

of T are simply connected: the bounded faces are triangles, and the ray r0 makes the outer face simply228

connected, as well. We direct all edges of T arbitrarily. Consider an arc γ ∈ Γ0(S) that crosses the229

edges of T transversely. The sequence of edges of T crossed by γ defines a word w(γ) over the alphabet230

{a, a−1 : a ∈ E′′}. Specifically, if γ crosses edge a of T from left to right (resp., right-to-left), the word231

w(γ) contains a (resp, a−1). Every letter in w(γ) corresponds to an intersection point between γ and an232

edge of T .233

For every arc γ ∈ Γ0(S) from s1 to sm, represented by a word w(γ), one can easily compute the shortest234

word ŵ(γ) of any other arc in Γ0(S) homotopic to γ by repeatedly applying the following operations:235

1. delete any two adjacent letters aa−1 or a−1a;236

2. delete any first (resp., last) letter a or a−1 where edge a is incident to s1 (resp., sm).237

Note, however, that for every edge e ∈ E, the homotopic shortest path ê follows the edges of the image238

graph G′, and so it does not cross any edge of T . Suppose ê = (s1, . . . , sm), and it is perturbed to a simple239

path ẽ = (s̃1, s̃2, . . . , s̃m) ∈ Γ0(S) homotopic to e, where s̃1 = s1, s̃m = sm, and s̃i ∈ Dsi for 1 < i < m.240

Then the word corresponding to ẽ is ŵ(e), that is w(ẽ) = ŵ(e). The following lemma characterizes all241

crossings between the shortest path ê and its perturbation ẽ. An interior edge sisi+1, 2 ≤ i ≤ m − 2,242

is called an inflection edge of ê if ∠(si−1, si, si+1) < π < ∠(si, si+1, si+2) or ∠(si−1, si, si+1) > π >243

∠(si, si+1, si+2); see Fig. 3 for an example.244

si si+1

s̃i s̃i+1

si

si+1
s̃i

s̃i+1

Figure 3: Left: Two consecutive convex angles ∠(si−1, si, si+1) < π and ∠(si, si+1, si+2) < π. Right: An inflection
edge sisi+1 with ∠(si−1, si, si+1) < π < ∠(si, si+1, si+1).

Lemma 7 Let ê = (s1, . . . , sm) and ẽ = (s̃1, s̃2, . . . , s̃m). The line segments sisi+1 and s̃j s̃j+1 cross if245

and only if i = j and sisi+1 is an inflection edge of ê.246

Proof. First note that s1s2 and s̃1s̃2 do not cross since they have a common endpoint s1 = s̃1; similarly247

sm−1sm and s̃m−1s̃m do not cross. Since s̃j s̃j+1 lies in the ε-neighborhood of sjsj+1, it can possibly cross248

at most three segments: sj−1sj , sjsj+1, and sj+1sj+2. Recall that the angular domain ∠(s̃i−1, s̃i, s̃i+1)249

contains si if and only if ∠(si−1, si, si+1) < π. Therefore, s̃j s̃j+1 crosses neither sj−1sj nor sj+1sj+2; but250

it may cross sjsj+1.251
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If two consecutive angles are convex (that is, ∠(sj−1, sj , sj+1) < π and ∠(sj , sj+1, sj+2) < π), then252

the intersection of the perturbed domains ∠(s̃j−1, s̃j , s̃j+1) ∩ ∠(s̃j , s̃j+1, s̃j+2) contains both sj and sj+1,253

hence the entire segment sjsj+1. Consequently, s̃j s̃j+1 does not cross sjsj+1. Similarly, if two consecutive254

angles at sj and sj+1 are reflex, then s̃j s̃j+1 does not cross sjsj+1. However, if sjsj+1 is an inflection edge,255

then the convex angular domains at s̃j and s̃j+1 lie on opposite sides of the line through s̃j s̃j+1, and they256

contain points sj and sj , respectively. Consequently, segment sjsj+1 crosses s̃j s̃j+1, as claimed. 2257

By Lemma 7, every inflection edge of ê = (s1, . . . , sm) crosses the corresponding perturbed edge in ẽ.258

Since ẽ and e are homotopic in Γ0(S), the arc e crosses every inflection edge of ê = (s1, . . . , sm).259

Lemma 8 Let ê = (s1, . . . , sm). Then there is a sequence of intersection points X = (x1, . . . , x`) in e ∩ ê260

such that x1 = s1, x` = sm, there is a point xi on each inflection edge of ê, and the corresponding subarcs261

of e and ê between consecutive points in X are interior-disjoint and homotopic.262

Proof. The word w(e) can be reduced to the word ŵ(e) by the two operations above, and ŵ(e) corresponds263

to the perturbation ẽ of the shortest path ê. By Lemma 7, the paths ê and ẽ cross once at each inflection edge.264

These intersection points correspond to letters in the word ŵ(e), which in turn correspond to intersection265

points between e and ê. Let (x2, . . . , x`−1) be the sequence of these intersection points in e ∩ ê; and put266

x1 = s1 and x` = sm. Then, by construction, the subarcs of e and ê between xi and xi+1 are homotopic for267

i = 1, . . . , ` − 1. However, the subarcs of e and ê between xi and xi+1 may still cross each other, and we268

need to refine the subdivision induced by X .269

While the subarcs of e and ê between xi and xi+1 intersect for some i = 1, . . . , ` − 1, we insert a new270

intersection point into X between xi and xi+1 as follows. If the subarcs of e and ê between xi and xi+1271

cross, then the crossing is recorded by some letter in the word w(e) (since T is the triangulation of the image272

graph G′). Let a be the first such letter in w(e), representing an intersection point y ∈ e ∩ ê. Since ẽ and273

ê do not cross between inflection edges (Lemma 7), this letter a was removed when w(e) was reduced to274

ŵ(e). Consequently, there is either a matching letter a−1 between xi and xi+1 that canceled a; or letter a275

corresponds to an edge incident to s1 or sm. In both cases, the subarcs of e and ê between xi and y (resp., y276

and xi+1) are homotopic. Hence, we can insert y into X between xi and xi+1.277

The above while loop terminates, as e and ê cross in finitely many points. When it does, the corresponding278

subarcs of e and ê between consecutive points in X are interior-disjoint and homotopic, as required. 2279

3 Plane Graphs with k-Bend Edges280

First Approach. Given a plane graphG = (S,E), we encode the shortest paths in Ê = {ê : e ∈ E}. This281

encoding generalizes a result in [7][Theorem 2]. Let I ⊂ S ×E′ be the set of all incident vertex-edge pairs282

(s, e′) in the image graph G. The code for Ê consists of the following:283

• The image graph G = (S,E′);284

• for every incidence (s, e′) ∈ I , the number inc(s, e′) of paths in Ê that start or end at s and contain285

edge e′;286

• for every edge e′ ∈ E′, the number vol(e′) of paths in Ê that contain edge e′;287

Lemma 9 The shortest paths in Ê corresponding to a plane graph G = (S,E) are uniquely determined by288

G′ = (S,E′), inc(s, e′) for all incidences (s, e′) ∈ I , and vol(e′) for all e′ ∈ E′.289

Proof. We show that a routing diagram ofG = (S,E) can be reconstructed up to isotopy fromG′ = (S,E′)290

and the values vol(e′) and inc(s, e′). The number of segments in each corridor Nst, for st ∈ E, are given by291

vol(st). It is enough to determine the routing diagram in the disks Ds for each vertex s ∈ S independently292
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(see Fig. 2(d)). That is, it is enough to determine the multiset of edge pairs (rs, st) that belong to some path293

in Ê that traverses vertex s.294

Consider a vertex s ∈ S. If s is not pointed in G′, then no path in Ê traverses s by Corollary 6. As-295

sume now that s is pointed in G′. For every edge e′ ∈ E′ incident to s, the number of paths in Ê that296

contain edge e′ and traverse s is exactly vol(e′) − inc(s, e′). The total number of paths traversing s is297

1
2

∑
t∈S [vol(st) − inc(s, st)]. By Lemma 5, the convex angles of the paths traversing s are nested. There-298

fore, we can successively match the incident edges of s, starting with the pair of edges of the reflex angle at299

s in G′, and continuing until all available edges are used. 2300

Corollary 10 The isotopy class of a plane graph G = (S,E) is determined by the shortest paths Ê.301

Proof. The shortest paths in Ê determine the image graph G′ = (S,E′), inc(s, e′) for all incidences302

(s, e′) ∈ I , and vol(e′) for all e′ ∈ E′. By Lemma 9, these determine a routing diagram up to isotopy.303

Since there exists a routing diagram isotopic to G [11], Ê determines the isotopy class of G. 2304

The above encoding, however, may require a superlinear number of bits. A plane graph with O(n) 1-305

bend edges can produce homotopic shortest paths of Θ(n2) total length [9]. In this case, the average volume306

of an edge e′ ∈ E′ is Θ(n), and the binary encoding of vol(e′) requires Θ(log n) bits. For all edges307

e′ ∈ E′, this code requires Θ(n log n) bits. Consequently, this encoding yields a trivial upper bound of308

b1(n) = 2O(n logn). In the next approach, we show how to use O(n log(2 + k)) bits to encode the geodesics309

Ê for k-bend edges.310

Second Approach: Minimum-Turn Paths. We decompose the homotopic shortest paths in Ê into sub-311

paths that can easily be reconstructed with a greedy strategy. Instead of recording vol(e′) for every edge312

e′ ∈ E′, we record the first and last edges of these subpaths, and reconstruct vol(e′) from this information.313

A directed path (s1, s2, . . . , sm) in a plane straight-line graph G′ = (S,E′) is a min-left-turn path if all314

interior vertices are pointed in G′, and for i = 2, . . . ,m − 1 the angle ∠(si−1, si, si+1) is minimal among315

all angles ∠(si−1, si, s) where sis ∈ E′. Analogously, it is a min-right-turn path if all interior vertices are316

pointed in G′, and angle ∠(si+1, si, si−1) is minimal among all angles ∠(s, si, si−1) where sis ∈ E′. A317

min-turn path is a directed path that is either a min-left-turn or a min-right-turn path. Note that a min-left-318

turn (resp., min-right-turn) path (s1, s2, . . . , sm) is uniquely determined by its first edge s1s2 and its last319

vertex sm: each edge of the path determines the next.320

We now encode the geodesic shortest paths Ê = {ê : e ∈ E} using min-turn paths. Assume that the321

image graph G′ = (V,E′) is connected, otherwise we encode the paths in each component of G′ separately.322

Decompose each path ê into the minimum number of min-turn paths (note that ê is an undirected path, and323

it may be decomposed into min-turn paths of opposite directions). Some of the min-turn paths may pass324

through the leftmost point s0 ∈ S; decompose these min-turn paths further into two min-turn paths: one325

ending and one starting at s0. Denote by P1 and P2 the set of resulting min-left-turn and min-right-turn326

paths, respectively. The new code for Ê consists of the following:327

• The image graph G = (S,E′);328

• for every incidence (s, e′) ∈ I and j ∈ {1, 2}329

– the number inc(s, e′) of paths in Ê that start or end at s and contain edge e′;330

– the number startj(s, e
′) of paths in Pj that start at s and contain edge e′; and331

• for every s ∈ S and j ∈ {1, 2}, the number endj(s) of paths in Pj that end at s.332

Lemma 11 The shortest paths in Ê corresponding to a plane graph G = (S,E) are uniquely determined333

by G′ = (S,E′), and the quantities inc(s, e′), startj(s, e
′), and endj(s) for all (s, e′) ∈ I , s ∈ S, and334

j ∈ {1, 2}.335
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Proof. By Lemma 9, it is enough to determine the number vol(e′) of shortest paths that contain edge e′ for336

every edge e ∈ E′. Every edge st ∈ E′ is the first edge of startj(s, st) min-turn-paths in Pj , for j ∈ {1, 2}.337

For j = 1, 2 and e′ ∈ E′, let volj(e
′) denote the number of paths in Pj in which e′ is an edge. Then338

vol(e′) = vol1(e′) + vol2(e′), and it suffices to determine the values volj(e
′) for j ∈ {1, 2}.339

Assume j = 1 (the case j = 2 is analogous). If st ∈ E′ is an interior edge of a min-left-turn path in P1,340

then s is a pointed vertex in G′ and st is the second leg in counterclockwise order of the reflex angle of s.341

Furthermore, s is not the left-most vertex s0 ∈ S (by construction, s0 is not the interior vertex of any path in342

P1). Let F ′ be the subgraph of G′ on the vertex set S that contains, for every pointed vertex s ∈ S, s 6= s0,343

the second leg of the reflex angle at s. Observe that F ′ is a forest. Indeed, assume to the contrary that F ′344

contains a cycle (s1, . . . , s`). Then for every i ≤ `, vertex si is pointed in G′ and w.l.o.g. edge sisi+1 is the345

second leg of the reflex angle of si. Consequently all edges in G′ incident to si lie in the closed halfplane346

on the left of −−−→sis+1. Since G′ is connected, (s1, . . . , s`) is a counterclockwise cycle on the boundary of the347

convex hull of S. The leftmost vertex s0 ∈ S is on the boundary of the convex hull, but the second leg of its348

reflex angle is not part of the graph F ′. The contradiction confirms our claim that F ′ is a forest.349

We define a flow network Nj , for j ∈ {1, 2} as follows: It contains the forest F ′ with undirected edges350

and unbounded capacities; two new nodes, a source a and a sink b; and for every vertex s ∈ S, a directed351

edge as of capacity
∑

e′:(s,e′)∈I startj(s, e
′) and a directed edge sb of capacity endj(s). It is clear that the352

union of min-left-turn paths forms a maximum flow from a to b, since these paths saturate the edges leaving353

a and the edges entering b. The network has a unique maximum flow since all nonsaturated edges are in354

F ′, hence they cannot form a cycle. Consequently, the network Nj determines the the values volj(e
′) for all355

e′ ∈ E′ and j ∈ {1, 2}. 2356

Lemma 12 If the shortest paths in Ê corresponding to a plane graph G = (S,E) can be decomposed into357

a total of L min-turn paths, then Ê can be encoded using O(n log(2 + L/n)) bits.358

Proof. The number of plane straight-line graphs G′ = (S,E′) on n points is O(187.53n) [32]. Conse-359

quently, each planar straight-line graph on S can be encoded using O(n) bits.360

Since the image graph is connected and planar, the number of incident vertex-edge pairs |I| in G′ is361

bounded by |I| = 2|E′| ≥ 2(n − 1) from below and |I| = 2|E′| ≤ 6n from above. The number of362

endpoints of shortest paths in Ê is
∑

(s,e′)∈I inc(s, e′) = 2|Ê| = 2|E| ≤ 6n. After splitting the min-363

turn paths at the leftmost point s0 ∈ S, if necessary, we have at most 2L min-turn paths in P , hence364 ∑
(s,e′)∈I startj(s, e

′) ≤ 2L and
∑

s∈S endj(s) ≤ 2L for j ∈ {1, 2}. The integers inc(s, e′), startj(s, e
′),365

and endj(s) can be encoded by O(log(2 + inc(s, e′))), O(log(2 + start(s, e′))), and O(log(2 + end(s)))366

bits, respectively. By Jensen’s inequality, the numbers inc(s, e′) have binary representation of size367

∑
(s,e′)∈I

O(log(2 + inc(s, e′))) ≤ O

(
|I| log

(∑
(s,e′)∈I(2 + inc(s, e′))

|I|

))

≤ O

(
6n log

(
12n+ 6n

2n− 2

))
= O(n).

The numbers startj(s, e
′) have binary representation of size368

∑
(s,e′)∈I

O(log(2 + startj(s, e
′))) ≤ O

(
|I| log

(∑
(s,e′)∈I(2 + startj(s, e

′))

|I|

))

≤ O

(
6n log

(
12n+ 2L

2n− 2

))
= O(n log(2 + L/n)),
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and analogously
∑

s∈S O(log(2 + endj(s))) ≤ O(n log(2 + L/n)) for j ∈ {1, 2}. Overall, our code uses369

O(n log(2 + L/n)) bits. 2370

In Sections 3.1 and 3.2, we show that a shortest path homotopic to a k-bend edge can be decomposed into371

O(k) min-turn paths.372

3.1 Plane Graphs with 1-Bend Edges373

In this section, we show that the geodesic shortest path of a 1-bend edge can be decomposed into at most374

two min-turn paths: at most one min-left-turn path and at most one min-right-turn path. A polygonal path375

(s1, . . . , sm) is convex if it lies on the boundary of the convex hull of the point set {s1, . . . , sm}.376

Lemma 13 If G = (S,E) is a plane graph with 1-bend edges, then every ê ∈ Ê is a convex path.377

Proof. Let e = (s1, p, sm) be a 1-bend edge between s1 and sm. Consider the points S1,m = S ∩378

ch(s1, p, sm) lying in the convex hull of s1, p, and sm (Fig. 4). If S1,m = {s1, sm}, then the homo-379

topic shortest path is ê = s1sm. Otherwise ê is part of the boundary of ch(S1,m) between s1 and sm in the380

interior of ch(s1, p, sm). In both cases, e can be deformed into ê within the triangle ch(s1, p, sm). 2381

Note that for every 1-bend edge e ∈ E, the union of e and ê forms a pseudo-triangle e ∪ ê: a simple382

polygon whose convex vertices are the two endpoints of e and the bend point of e. See Fig. 4 for examples.383

Since e and ê are homotopic, no point of S lies in the interior of the pseudo-triangle e ∪ ê.384

e

s1
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s3 s4
s5

s6
s7

s8 s1

s2
s3

s5

s7
s8

s4 s6

e

e
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s2
s3

s4 s5 s6
s7

s8

t
r

t

s2
s3

s4 s5 s6 s7

s2
s3

s5
s7

s4 s6
s2

s3
s7

r

s4 s5 s6

s1 s8s8s1

s8s1

ê

ê ê

Figure 4: Three examples in two views: solid one-bend edges and dashed homotopic shortest paths (top); and solid
homotopic shortest paths (bottom). Left: A shortest path ê intersects several pairwise disjoint paths. Middle: A shortest
path ê overlaps with several intersecting paths. Right: If s4 is blue (square) and s6 is red (circle) in ê = (s1, . . . , s8),
then the edges s4r and ts6 would cross in G′.

We use the convention that ê = (s1, . . . sm) is labeled such that the angles ∠(si−1, si, si+1) are convex385

(and the angles ∠(si+1, si, si−1) are reflex). By Lemma 5, the interior vertices s2, . . . , sm−1 of ê are pointed386

in G′. However, the reflex angles ∠(si+1, si, si−1) are not necessarily the same as the reflex angles of the387

graph G′ (e.g., angles at red and blue vertices in Fig. 4). Consider a path ê = (s1, . . . , sm) in G′. We say388

that an interior vertex si, 1 < i < m, is389

• red in ê if si−1si is not on the boundary of the reflex angle of G′ at si (i.e., si−1si is not one of the390

sides of the reflex angle; e.g., s3 and s4 in Fig. 4, middle);391
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• blue in ê if sisi+1 is not adjacent to the reflex angle of G′ at si (e.g., s5 and s6 in Fig. 4, middle);392

• regular in ê if both si−1si and sisi+1 are adjacent to the reflex angle of G′ at si.393

The key observation for the efficient encoding of the paths in Ê is that the red and blue vertices can be394

(weakly) separated in every ê ∈ Ê.395

Lemma 14 LetG = (V,E) be a 1-bend plane graph. Then every path ê = (s1, . . . , sm) can be decomposed396

into two paths: one is incident to s1 and its interior vertices are not blue; and the other is incident to sm and397

its interior vertices are not red (the common endpoint of the two paths may be both red and blue).398

Proof. Suppose to the contrary that ê = (s1, . . . , sm) has two interior vertices, si and sj with 1 < i <399

j < m, such that si is blue and sj is red. Refer to Fig. 4, right. Recall that si and sj are pointed in G′400

by Lemma 5. Denote by r ∈ S and t ∈ S the two points such that the reflex angles of G′ at si and sj ,401

respectively, are ∠(r, si, si−1) and ∠(sj+1, sj , t). By Lemma 5, si−1si and sir belong to a shortest path ê1402

for some e1 ∈ E. Similarly, tsj and sjsj+1 belong to a shortest path ê2 for some e2 ∈ E. Both r and t lie403

in the exterior of the pseudo-triangle e ∪ ê, since r, t ∈ S. Therefore, the segments sir and tsj cross in the404

interior of e ∪ ê. This contradicts the fact that G′ is a plane straight-line graph. 2405

Lemma 14 readily provides a decomposition of each ê into two min-turn paths.406

Corollary 15 LetG = (S,E) be a 1-bend plane graph. Then every ê ∈ Ê is the union of up to two min-turn407

paths starting from the endpoints of e.408

Proof. Consider the decomposition of ê = (s1, . . . , sm) into two paths as in Lemma 14, and direct them409

such that they start from s1 and sm, respectively. Since every interior vertex of the path starting from s1410

(resp., sm) is red or regular (resp., blue or regular), it is a min-turn path. 2411

Corollary 15 combined with Lemmata 11 and 12 implies that the number of 1-bend plane graphs on a set412

S of n points in the plane is 2O(n). This confirms Theorem 1 for k = 1.413

3.2 Extension to k-Bend Edges – Proof of Theorems 1 and 2414

In this section, we show that the geodesic shortest path of a k-bend edge can be decomposed into at most415

2k min-turn paths. The strategy for 1-bend edges in Subsection 3.1 generalizes to k-bend edges: the main416

difference is that e∪ ê need not be a simple polygon. By Lemma 8, there is a sequence of X = (x1, . . . , x`)417

intersection points in e ∩ ê such that x1 = s1, x` = sm, there is a point xi on each inflection edge of418

ê, and the corresponding subarcs of e and ê between xi and xi+1 are interior-disjoint and homotopic for419

i = 1, . . . , `− 1 (see Fig. 5). The corresponding subarcs of e and ê (with common endpoints) bound simple420

polygons Pi, i = 1, . . . , `− 1, whose interior contains no points from S.421

Suppose that (x1, s2, s3, . . . , sm−1, xm) is a subarc of ê, where the endpoints are x1, xm ∈ e ∩ ê are422

consecutive points in X . Since every inflection edge of ê is subdivided, all angles ∠(si−1, si, si+1) are423

convex for i = 2, . . . ,m − 1, or they are all reflex. Assume they are all reflex (the case of convex angles424

is analogous). We can distinguish red, blue, and regular interior vertices in the same way as in the case of425

1-bend edges. We generalize Lemma 14 as follows.426

Lemma 16 Let G = (V,E) be a plane graph with polyline edges. Let (x1, s2, . . . , sm−1, xm) be a subarc427

of ê ∈ Ê such that the corresponding subarc of e has ` ≥ 1 bends. Then this subarc cannot contain a428

subsequence (sσ(1), . . . , sσ(2`)) such that 1 < σ(1) < . . . < σ(2`) < m, and sσ(j) is red when j is even and429

blue when j is odd.430
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Figure 5: An edge e = s1s16 with k = 9 bends, and its homotopic shortest path ê = (s1, . . . , s16).

Proof. Suppose to the contrary that γ̂ = (x1, s2, . . . , sm−1, xm) contains a subsequence (sσ(1), . . . , sσ(2`))431

of length 2` such that sσ(j) is red when j is even and blue when j is odd. Refer to Fig. 5. For the red vertices432

sσ(j), j even, there is a vertex rσ(j) ∈ S such that the reflex angle of G′ at sσ(j) is ∠(sσ(j)+1, sσ(j), rσ(j)).433

Similarly, for the blue vertices sσ(j), j odd, there is a vertex rσ(j) ∈ S such that the reflex angle of G′ at434

sσ(j) is ∠(rσ(j), sσ(j), sσ(j)−1). The segments sσ(j)rσ(j), j = 2, . . . ,m− 1, are pairwise noncrossing since435

they are edges of the image graph G′.436

Let P be the simple polygon bounded by γ̂ and the corresponding subarc of e. The points rσ(j) for437

j = 2, . . . ,m − 1 lie in the exterior of P . Hence the segments sσ(j)rσ(j) decompose the interior of poly-438

gon P into 2` + 1 simply connected regions. We now argue that every other region is bounded by a reflex439

arc and a portion of the edge e: hence the portion of e on its boundary must include a bend point. It440

follows that the number of bend points is at least ` + 1, contradicting our assumption that the relevant441

subarc of e has only ` bends. Indeed, the path (x1, s2, . . . , sσ(1), rσ(1)) is reflex by construction. Sim-442

ilarly, the path (rσ(2`), sσ(2`), sσ(2`)+1, . . . , sm−1, xm) is reflex. For every even index j < 2`, the path443

(rσ(j), sσ(j), . . . , sσ(j+1), rσ(j+1)) is also reflex. 2444

Corollary 17 Let e be a polyline edge with k bends in G. Then every ê can be decomposed into at most 2k445

min-turn paths.446

Proof. The intersection points in e ∩ ê decompose e and ê into at most k subarcs such that each subarc of447

e contains at least one bendpoint. Suppose that e is decomposed into p ≤ k subarcs with `1, . . . , `p bends.448

By Lemma 16, the ith subarc of ê can be decomposed into at most 2`i paths such that every interior vertex449

of a path is either (red or regular) or (blue or regular). These paths are min-turn paths with the appropriate450

orientation. The total number of min-turn paths is at most
∑p

i=1 2`i = 2k, as claimed. 2451

Proof of Theorem 1. Let S be a set of n points in the plane. Each planar graph inBk(S) can be embedded as452

a plane graph G = (S,E) with k-bend edges. The total number of bends is at most K ≤ (3n)k = 3kn. The453

edges in E are in one-to-one correspondence with the homotopic shortest paths in Ê = {ê : e ∈ E}. The454

paths in Ê can be decomposed into at most 2K min-turn paths (Corollary 17), and consequently encoded455

using O(n log(2 +K/n)) = O(n log(2 + k)) bits, as claimed. 2456

Proof of Theorem 2. Let S be a set of n points in the plane. Each isotopy class in Tk(S) is represented by a457

plane graph G = (S,E) with polyline edges and at most K bends. Each isotopy class uniquely determines458

a set of homotopic shortest paths Ê = {ê : e ∈ E} (Corollary 10), which can be decomposed into at most459

2K min-turn paths (Corollary 17), and consequently encoded with O(n log(2 +K/n)) bits (Lemma 12). 2460
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4 Triangulations with Polyline Edges461

In this section, we consider augmenting the graphs in Bk(S) with new edges. In Section 4.1, we consider462

adding a new k-bend edge to a given embedding of a cycle, and note an interesting dichotomy based on463

the parity of k. In Section 4.2, we present the main result of this section; we show that an edge-maximal464

graph in Bk(S) need not be a combinatorial triangulation. We construct a point set S ⊂ R2 and a graph465

G ∈ Bk(S) such that no matter how G is embedded on S with k bends per edge, it cannot be augmented466

into a combinatorial triangulation.467

4.1 Embedded cycles with k-bends per edge468

For triangulating a single face in a k-bend embedding of an n-vertex cycle Cn, we observe a dichotomy469

based on the parity of k.470

Proposition 18 Let k and n be integers with k ≥ 1 and n ≥ 3.471

1. If k is odd, then there is a k-bend embedding of Cn in which the inner (resp., outer) face cannot be472

triangulated using k-bend edges.473

2. If k is even, then in every k-bend embedding of the cycle Cn the inner and the outer face can each be474

triangulated using k-bend edges.475

Note that the second statement does not extend to the case k = 0: the outer face of a geometric triangula-476

tion on a vertex set S is the complement of the convex hull ch(S), which might not be a triangle.477

We use the concept of visibility and link distance [26] in our argument for odd k. Let a k-bend embedding478

of a graph G be given. We say that two points p and q are mutually visible if the line segment pq is interior-479

disjoint from (the embedding of) the edges of G. Two vertices v1 and v2 can be connected by a 1-bend edge480

in a face F if both v1 and v2 see a point (the bend point) in F . The set of points in F visible from a point v481

is the visibility region of v in F .482

Similarly, v1 and v2 can be connected by a k-bend edge in face F , for k odd, if and only if there is a point483

p ∈ F that can be connected to both v1 and v2 with bk/2c-bend polylines, or equivalently, there is a point484

p ∈ F with link distance to both v1 and v2 at most dk/2e.485

In the proof of Proposition 18, we shall use Sperner’s Lemma [34], a well-known discrete analogue of486

Brouwer’s fixed point theorem.487

Lemma 19 (Sperner [34]) Let K be a geometric simplicial complex in the plane, where the union of faces488

is homeomorphic to a disk. Assume that each vertex is assigned a color from the set {1, 2, 3} such that three489

vertices v1, v2, v3 ∈ ∂K are colored 1, 2, and 3, respectively, and for any pair i, j ∈ {1, 2, 3}, the vertices490

on the path between vi and vj along ∂K that does not contain the 3rd vertex are colored with {i, j}. Then491

K contains a triangle whose vertices have all three different colors.492

Proof of Proposition 18 We prove statements 1 and 2 separately.493

Odd k. For k = 1, consider the embedding of the cycle C4 in Fig. 6(a). Any two nonadjacent vertices have494

disjoint visibility regions in the inner face F , consequently no two nonadjacent vertices can be connected by495

a 1-bend edge in F . Similarly, in the embedding of the cycle C4 in Fig. 7(a), any two nonadjacent vertices496

have disjoint visibility regions in the outer face F , consequently the outer face cannot be triangulated.497

Both constructions generalize for all odd k ∈ N. For the inner face F , we modify the polygon in Fig. 6(a)498

by replacing each segment incident to a vertex with a zigzag path with bk/2c bends as indicated in Fig. 6(b-499

c). As a result, the sets of points in F at link distance at most dk/2e from two nonadjacent vertices are500

disjoint.501



Plane Graphs with Polyline Edges 15

. . .

k = 1 k = 3 k = 5

(a) (b) (c)

Figure 6: A plane realization of C4 with k-bend edges, for k = 1, 3, 5, such that the interior of C4 cannot be
subdivided into two triangles by a single k-bend diagonal.

When F is the outer face, we modify the polygon in Fig. 7(a) by replacing each segment incident to a502

vertex with a spiral that winds around the convex hull with bk/2c bends as in Fig. 7(b-c). Here again, the503

sets of points in F at link distance at most dk/2e from two nonadjacent vertices will be disjoint.504

. . .

k = 1 k = 3

(a) (b)

k = 5

(c)

Figure 7: A plane realization of C4 with k-bend edges, for k = 1, 3, 5, such that the exterior of C4 cannot be
subdivided into two triangles by a single k-bend diagonal.

Even k. Let k ≥ 2 be an even integer. We proceed by induction on n. The claim trivially holds for n = 3.505

Assume that n ≥ 4 and that the claim holds for all cycles with fewer than n vertices. It is enough to show506

that in every k-bend embedding of Cn, the inner and the outer face can each be subdivided by a new k-bend507

edge between two nonadjacent vertices. Then each subface can be triangulated by induction.508

Let S be a set of n ≥ 4 points in the plane, and consider a cycle Cn = (S,E) with a k-bend embedding.509

Assume, by perturbing the points if necessary, that the union of S and all bend points is in general position510

(no three collinear points), and every edge has precisely k bends. Let F be the inner or outer face of Cn.511

Subdivide each edge with k new vertices placed at the bend points: we obtain a straight-line embedding512

of a cycle Cn(k+1) = (S′, E′), which is a simple polygon with n(k + 1) vertices in general position. We513

introduce a 3-coloring of S′ as follows: let S = {si : i = 1, . . . , n}. Assign color 1 to the vertex s1; color514

2 to vertex si if i is even, and color 3 to vertex si if is odd and i ≥ 3. For each vertex si, assign the color515

of si to the k/2 closest bend points along the cycle. (Note that this is not a proper coloring.) Construct516

an arbitrary geometric triangulation T of F ; and let K(T ) denote the simplicial complex formed by the517

bounded triangles in T . See Fig. 8(a)-(b) for an example. We distinguish two cases.518

Case 1: F is the inner face. In this case, the simplicial complex K(T ) is homeomorphic to a disk. By519

Sperner’s Lemma [34], T contains a 3-colored triangle. Let (a, b, c) be a 3-colored triangle in T . Vertex520

a (resp, b and c) lies in a (k/2)-neighborhood of some vertex in S along the cycle Cn(k+1). Since n ≥ 4,521

at least one pair of vertices in {a, b, c} is in the (k/2)-neighborhoods of two nonadjacent vertices of Cn.522

Without loss of generality, ab is such an edge where a and b lie in the k/2-neighborhoods of si and sj ,523
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respectively, where j 6∈ {i − 1, i, i + 1 mod n}. We can now construct a polyline p with at most k bends524

between si and sj along the edges of T : Concatenate the polyline from si to a along Ck, the edge ab, and525

the polyline from b to sj along Ck. Perturb the interior vertices of p by moving them into the interior of F526

along the angle bisectors of the incident edges (Fig. 8(c)). We obtain a k-bend edge between si and sj that527

lies in F .528

k = 2

(a) (b) (c)

Figure 8: (a) A 2-bend embedding of C4. (b) The coloring of the vertices and bend points, and a triangulation of the
inner face. Two properly colored triangles are highlighted. (c) The triangulation contains a polyline with k = 2 bends
between two opposite vertices; which can be perturbed into a 2-bend edge lying in the inner face.

Case 2: F is the outer face. In this case K(T ) is homotopy equivalent to a circle (the hole corresponds to529

the inner face of Cn), and the argument in Case 1 does not go through in general. The outer face of T is530

the complement of ch(S′). Each vertex of ch(S′) is incident to both the inner face of Cn(k+1) and the outer531

face of T . Consequently, the vertices of ch(S′) decompose K(T ) into components, each of which is either532

a single edge or homeomorphic to a disk. If any of these components contain 3 or more vertices from S, the533

argument of Case 1 produces a desired new k-bend edge. Suppose that all these components contain 2 or534

fewer vertices from S. Note that for each vertex si ∈ S, there is a polyline pi with at most k/2 edges (i.e.,535

k/2− 1 bends) to a vertex incident to ch(S′). Consider two arbitrary nonadjacent vertices of Cn, say si and536

sj . Extend the last edges of the polylines pi and pj to some points a and b, respectively, in the exterior of537

ch(S′). We may assume that the last edges of pi and pj are nonparallel. If a and b are sufficiently far from538

ch(S′), then the line segment ab lies in the outer face F . The concatenation of pi, ab, and pj gives a polyline539

with at most k bends between si and sj . A perturbation described in Case 1 yields a k-bend edge between540

si and sj that lies in F . 2541

Remark. Proposition 18(2) does not generalize to all embedded graphs with k-bend edges when k is even.542

Figure 9 shows two graphs embedded with 2-bend edges that cannot be triangulated: the addition of the543

2-bend diagonals in the shaded faces would introduce double edges.544

4.2 Combinatorial triangulations realizable with k-bend edges545

For a graph in G = (S,E) in Bk(S), k ≥ 1, the vertex set is fixed, but bend points can vary. If one546

embedding cannot be triangulated with k-bend edges, another embedding with different bend points may547

still be. In this section we show that an edge-maximal graph in B1(S) may have arbitrarily many and548

arbitrarily large bounded faces.549

Theorem 3 For every f, h ∈ N, with f ≥ 4 and h ≥ 1, there is a point set S and a graph G = (S,E) such550

that G is an edge-maximal graph in B1(S) and every 1-bend plane embedding of G has at least h bounded551

faces each with f edges.552
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(a) (b)

Figure 9: Two graphs embedded with 2-bend edges that cannot be triangulated.

Proof. We present the proof for f = 4 and h = 1. The proof for larger values of f are analogous, and553

extensions to larger values of h follow from repeating congruent copies of S and isomorphic copies of G.554

Consider the (labeled) graph G on 20 vertices in Figure 10(a). It contains a 4-cycle (1, 2, 3, 4), each edge555

of which is adjacent to a separating triangle around the points 9, 10, 11, and 12, respectively; and it also556

contains an 8-cycle (1′, . . . , 8′) around the first 12 vertices.557

We construct a labeled point set S. We have S = A∪B whereA = {1, . . . , 12} andB = {1′ . . . , 8′}. The558

points in A are arranged as in Fig. 10(c). The cycle (1, 2, 3, 4) forms a square; it contains a smaller square559

(9, 10, 11, 12) such that W = (1, 9, 2, 10, 3, 11, 4, 12) forms a windmill-shaped polygon (see Fig. 10(c)),560

that is, the visibility ranges of vertices 1 and 3 (resp., 2 and 4) are disjoint in the interior ofW . Points 5, . . . , 8561

are sufficiently close to 1, . . . , 4, respectively, such that any substitution in W between corresponding pairs562

of close vertices maintains a windmill-shaped polygon. The points in B are the vertices of a regular octagon563

(1′, . . . , 8′) such that (i) it is concentric with (1, 2, 3, 4) and (ii) its diameter is 4 times larger than the564

diameter of A. Figure 10(b-c) show a 1-bend embedding of G on S, confirming that G ∈ B1(S).565

Since G is planar and 3-connected, it has a unique combinatorial embedding [36] (up to the choice of566

the outer face). We show that in every 1-bend embedding of G on S, the face F = (1, 2, 3, 4) cannot be567

triangulated. Suppose, to the contrary, that G admits a 1-bend embedding in which F can be triangulated.568

By the rotational symmetry of the construction, we may assume that edge {2, 4} triangulates F . That is,569

there is a bend point x visible to both 2 and 4 in F . We next derive conditions on the possible location of x.570
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Figure 10: (a) GraphG, with four shaded separating triangles. (b) A 1-bend embedding ofG on the point set S where
face (1, 2, 3, 4) cannot be triangulated; see subfigure (c) for a detailed view of vertices 1, ..., 12. (c) The point set A
and the embedding of its induced subgraph.

We first argue that all faces of the embedding that are induced by A are bounded. Specifically, we claim571

that for every integer t ≥ 3, the interior of a t-cycle induced by A contains at most t points from B. Let Ct572
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be such a cycle, and suppose its interior contains b′ ∈ B. Since B is disjoint from ch(A), point b′ lies in573

the convex hull of a 1-bend edge of Ct, say {u, v}. The convex hull of edge {u, v} is a triangle (u, v, w),574

where w is the bend point. Since u, v ∈ A, the triangle (u, v, w) is contained in a slab of width at most575

diam(A). However, every such slab contains zero, one, or two opposite points from B. Consequently, at576

most one point of B lies in the interior of (u, v, w), and at most t points in the interior of Ct, as claimed.577

It follows that (1, 2, 3, 4) can contain at most 4 out of 8 points of B, and so it is a bounded face. Similarly,578

the interiors of the separating triangles (1, 2, 5), (2, 3, 6), (3, 4, 7), and (4, 1, 8) each contain three bounded579

faces induced by A, as well as the points 9, 10, 11, and 12, respectively.580

Consider the separating triangle (1, 2, 5). Point 9 lies in the interior of (1, 2, 5), but not in ch(1, 2, 5).581

Therefore, 9 lies in the convex hull of one of the 1-bend edges {1, 2}, {2, 5}, or {1, 5}. If the convex hull of582

{1, 2} or {2, 5} contains 9, then the segment of the edge incident to vertex 2 is to the right of
−−−→
(2, 9), hence583

the bend point x ∈ F lies in the right halfplane of
−−−→
(2, 9). If the convex hull of {1, 5} contains 9, then x is584

either in the right halfplane of
−−−→
(2, 9) as in the previous case, or in the left halfplane of

−−−→
(2, 9) but in the right585

halfplane of
−−−→
(1, 9). In the latter case, however, the line segment x4 crosses the convex hull of the 1-bend586

edge {1, 5}, and so this case can be ruled out. Therefore, in all cases, x lies in the halfplane on the right of587
−−−→
(2, 9).588

An analogous argument for separating triangle (3, 4, 7) and point 11 implies that x lies in the right half-589

plane determined by
−−−−→
(4, 11). By construction of the point set A, the two halfplanes that contain x are590

disjoint. We conclude that there is no point x visible from both 2 and 4. 2591

For all even k ≥ 2, Proposition 18(2) implies the following.592

Proposition 20 Let k ≥ 2 be an even integer, and S ⊂ R2 a finite point set in general position. Then every593

3-connected edge-maximal graph in Bk(S) is a combinatorial triangulation.594

Proof. Suppose, to the contrary, that there is a 3-connected graph G = (S,E) that is edge-maximal in595

Bk(S) but not a combinatorial triangulation. Consider an arbitrary k-bend embedding of G. Since G is596

not a combinatorial triangulation, the embedding contains some face F bounded by 4 or more edges. By597

Proposition 18(2), face F has two nonadjacent vertices, say u and v, that can be connected by a new k-bend598

edge in F . The edge {u, v} is not present in E, otherwise {u, v} would be a 2-cut in G. Consequently, G599

can be augmented to a strictly larger graph in Bk(S), contradicting its maximality. 2600

Remark. The 3-connectivity condition was crucial in the proof of Proposition 20. It is possible that a601

2-connected edge-maximal graph in B2(S) is not a combinatorial triangulation. For example, the 2-bend602

embedding in Fig. 9(b) has two quadrilateral faces, but it cannot be augmented to a combinatorial triangula-603

tion in B2(S), since the only possible 2-bend diagonals of the two quadrilaterals are parallel edges.604

It is likely that Theorem 3 generalizes to all odd integers k ≥ 1, by ensuring that every k-bend embedding605

has a face with a certain shape, as in Fig. 6. We do not pursue generalizations of Theorem 3 for k ≥ 2 here.606

5 Monotone Embeddings607

An embedding of a graph in the plane is called monotone if every edge is embedded as an x-monotone608

Jordan arc. We show that the number of n-vertex labeled graphs that admit a monotone embedding on a609

given set of n points in the plane is super-exponential.610

Theorem 4 For every set S of n points in the plane, no two on a vertical line, at least b(n− 2)/2c! labeled611

planar graphs with n ≥ 4 vertices admit a monotone embedding on S.612
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0 1 2 3 4

∆1∆2∆3∆4

5 6 7 8 9

Figure 11: A monotone plane graph on the vertex set S = {0, 1, . . . , 9} corresponding to the permutation given by
π(2) = 1, π(2) = 4, π(3) = 3, and π(4) = 1.

Proof. We may assume w.l.o.g. that n is even, and let n = 2m+ 2 for some m ∈ N. We may also assume613

that the vertices are integer points on the x-axis S = {(i, 0) : i = 0, . . . , 2m + 1} by applying a homeo-614

morphism that preserves x-monotonicity. We label the vertices by their x-coordinates i = 0, 1, . . . , 2m+ 1.615

We construct a family of m! nonisomorphic planar graphs on n vertices, together with suitable plane em-616

beddings on the point set S using x-monotone edges.617

The leftmost vertex is 0. Partition the remaining 2m + 1 vertices into two sets: A = {1, . . . ,m} and618

B = {m + 1, . . . , 2m + 1}. In all graphs that we construct, the vertices in B are joined by a path (m +619

1, . . . , 2m + 1), and vertex 0 is adjacent to all vertices in B. For i = 1, 2, . . . ,m, the triangle ∆i =620

(0, 2m+ 2− i, 2m+ 1− i) is induced by 0 and two vertices in B. Each ∆i will contain exactly one vertex621

π(i) ∈ A; and π(i) is adjacent to the three corners of the triangle ∆i. By construction, π : [m] → [m] is a622

permutation. Note that any two permutations correspond to nonisomorphic labeled graphs.623

We show that every permutation π : [m] → [m] produces a graph that admits a monotone embedding624

on S. For a given permutation π : [m] → [m], a monotone embedding can be constructed as follows. The625

edges of the path (m + 1, . . . , 2m + 1) are realized by horizontal straight-line segments. For every edge626

ei = (0, 2m + 1 − i), i = 0, 2, . . . ,m, we incrementally construct an x-monotone path: Let edge e0 be a627

monotone path below the x-axis. When ei has been constructed, then draw ei+1 such that it closely follows628

ei from above, but makes a loop above vertex π(i) ∈ A. See Fig. 11 for an example. Finally, connect each629

point i ∈ A to the three corners of ∆i with three monotone paths.630

The m! permutations π : [m] → [m] produce m! pairwise nonisomorphic labeled planar graphs, each of631

which admits a monotone embedding onto the labeled point set S. 2632

6 Conclusions633

Theorem 1 bridges the gap between the number 2Θ(n) of straight-line graphs and the number 2Θ(n logn)
634

of graphs embedded with k = 120n bends per edge on a set of n points in the plane. Our upper bound635

bk(n) ≤ 2O(n log(2+k)) on the number of graphs that embed on n points in the plane with k-bend edges is636

the best possible, apart from the hidden constants, for all k, n ∈ N, 0 ≤ k ≤ 120n. We have introduced the637

graph class Bk(S) for every finite point set S ⊂ R2 and integer k ≥ 0. It is a natural question whether the638

graphs in these classes can be recognized efficiently. For k = 0 and n = |S|, an O(n log n)-time algorithm639

can decide whether a graph G = (S,E) is in B0(S), by simply testing intersections between nonadjacent640

edges (line segments). For k = 1, the problem is already NP-hard. Bastert and Fekete [5] proved that,641

given a point set S and a graph G = (S,E), it is NP-hard to decide whether G admits a 1-bend embedding.642

Similarly, we can ask whether a graph G = (S,E) is in Bk(S), for k ≥ 2; or approximate the minimum643

integer k such that G = (S,E) is in Bk(S). Finding the minimum k such that G = (S,E) admits a k-bend644

embedding, or minimizing the total number of bends are already known to be NP-hard [5].645

We do not know what the minimum bit complexity of a 1-bend embedding is when the vertices have646

integer coordinates. Specifically, if S is a subset of an m × m section of the integer grid in R2, what is647

the minimum refinement of the grid that can accommodate all bend points in some embedding of any graph648

in B1(S)? A related algorithmic question concerns finding homotopic paths with geometric constraints:649
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Polynomial-time algorithms are known [6, 11, 12] for finding homotopic shortest paths for pairwise non-650

crossing polyline edges; but no efficient algorithm is known for finding homotopic shortest 1-bend edges for651

a given 1-bend embedding of a graph in B1(S).652

In Section 4, we have seen that for some point sets S there exists graphs G ∈ Bk(S) that cannot be653

triangulated inBk(S) when k = 1. We believe that there exist similar instances for every odd integer k ≥ 1,654

but analysing all possible k-bend embeddings of a graph G ∈ Bk(S) requires additional tools when k ≥ 3.655

We do not know of any combinatorial characterization of graphs G ∈ Bk(S) that can be triangulated, or656

whether such graphs can be recognized efficiently.657
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