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Abstract

A binary space partition (BSP) for a set of disjoint objects in Euclidean space is a recursive
decomposition, where each step partitions the space (and some of the objects) along a hyperplane
and recurses on the objects clipped in each of the two open halfspaces. The size of a BSP is
defined as the number of resulting fragments of the input objects. It is shown that every set of n
disjoint line segments in the plane admits a BSP of size O(n log n/ log log n). This bound is best
possible apart from the constant factor.

1 Introduction

A binary space partition (BSP) for a set of objects is a simple hierarchical decomposition of the space
into convex faces. Given a finite set of disjoint (d − 1)-dimensional objects in Rd, a BSP partitions
the space (and some of the input objects) along a hyperplane and recurses on the objects clipped in
each nonempty open half-space. An auto-partition is a special type of BSP, where every partition
step is done along the supporting hyperplane of one of the input objects. The partition steps of a
BSP can be stored in a binary tree data structure, called BSP tree, where each node corresponds to
a subproblem and each nonleaf node stores a partition hyperplane [11].

BSPs were introduced in the computer graphics community [16, 24, 25] for maintaining the back-
to-front order of the fragments of the input objects, and for rendering polygonal scenes efficiently
with z-buffering. Because of their simplicity, BSPs have found a variety of applications in solid
modeling, shadow generation, motion planning, approximate range searching, and network design
problems [2, 3, 6, 9, 12, 14, 20, 21], to name a few examples.

The most important parameter of a BSP is the number of fragments it partitions the input objects
into, this is called the size of the BSP. It is an obvious lower bound for the size of the corresponding
BSP tree data structure, and it is also an asymptotic upper bound if every fragment has bounded
description complexity (e.g., line segments in the plane or axis-aligned boxes in Rd), and the number
of objects monotonically decreases in each subproblem (i.e., there are no “redundant” cuts).

Theoretical research focused on finding the minimum size of a BSP for certain types of objects
in Rd. Paterson and Yao [22] proved that every set of n disjoint line segments in the plane admits a
BSP of size O(n log n). They also showed that by partitioning along the input segments in a random
order (combined with free cuts, defined below) produces an auto-partition of O(n log n) expected size

Paterson and Yao [23] also proved that n disjoint line segments with only two distinct directions
(e.g., axis-parallel segments) admit a BSP of size O(n). This was later generalized: n disjoint line
segments with k, 1 ≤ k ≤ n, distinct directions admit a BSP of size O(n log k) and an auto-partition
of size O(nk) [28]. A set of n disjoint segments also admits a BSP of size O(n) if their lengths differ
by no more than a constant factor [10]. However, there are sets of n disjoint line segments for which
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any BSP has Ω(n log n/ log log n) size [26]. Here we show that this lower bound is best possible apart
from the constant factor.

Theorem 1. Every set of n disjoint line segments in the plane admits a BSP of size O(n log n/ log log n).

The proof is constructive and leads to a deterministic algorithm for constructing a BSP tree
in O(n polylog n) time. Our partition algorithm does not guarantee that each line segment is
fragmented into O(log n/ log log n) pieces. It relies on a charging scheme where each event that “a
partition line cuts an input segment” is charged to one of the input segments, and each segment is
charged O(log n/ log log n) events. The BSP we present is not necessarily an auto-partition, since the
partition lines are necessarily spanned by a segment in the corresponding subproblem. With some
extra work, however, we can also construct an auto-partition of size O(n log n/ log log n).

Theorem 2. Every set of n disjoint line segments in the plane admits a auto-partition of size
O(n log n/ log log n).

Organization. We present a key lemma (Lemma 3) and a basic building block of our partition
algorithms in Section 2.1. We prove Lemma 3 in Section 3. Then we prove Theorem 1 by repeatedly
applying Lemma 3 in Section 4. We adjust these methods to produce an auto-partition of size
O(n log n/ log log n) in Section 5. We describe how to implement our BSP algorithm for a set of n
disjoint line segments in O(n polylog n) time (in the real RAM model of computation) in Section 6.
We conclude with some open problems in Section 7.

Related results. Paterson and Yao [22] showed that n disjoint (d − 1)-dimensional simplices in
Rd, d ≥ 2, admit an auto-partition of size O(nd−1), and this bound is best possible apart from the
constant factor. This is also the best bound for BSPs for d = 3 (for disjoint triangles in R3). However,
there is no set of disjoint objects in Rd is known, for any d ∈ N, that requires a super-quadratic BSP.

Paterson and Yao [23] showed that any set of n axis-aligned line segments in Rd admits a BSP
of size O(nd/(d−1)) for d > 2, and this bound is best possible. They also gave a tight O(n3/2) bound
on the BSP size for n disjoint axis-aligned rectangles in R3. Dumitrescu et al. [15] proved upper and
lower bounds for the BSP size of disjoint k-dimensional axis-aligned boxes in Rd, for all 1 < k < d.
Their upper bound of O(nd/(d−k)) is tight for 1 ≤ k < d/2. They also proved a tight bound of O(n5/3)
for n disjoint axis-aligned 2-rectangles in R4. Agarwal et al. [1] gave an upper bound of n2O(

√
log n) for

the BSP size of n disjoint axis-aligned fat rectangles in R3 (in a set of fat rectangles the aspect ratio
is bounded by a constant). This upper bound was later improved to O(n log8 n) [27]. Hershberger
et al. [18] gave a tight bound of O(n4/3) for the BSP size of n axis-aligned boxes that tile R3. De
Berg [7, 10] showed that there is an O(n) size BSP for the boundary of disjoint fat polyhedra in any
dimensions Rd; this result was extended to a slightly more general class of uncluttered scenes [8].

2 Preliminaries

The size of a BSP for n disjoint line segments in the plane is the number of fragments that the input
segments are partitioned into. Instead of counting fragments, we will keep track of the number of
events that a partitioning line crosses an input segment, in other words, the events that a fragment is
cut into two fragments. Since initially there are n line segments and each event increases the number
of fragments by one, it is enough to show that the number of cuts is O(n log n/ log log n).

At each node of a BSP tree, we maintain a convex region, called a cell, that contains all segments
of the corresponding subproblem. The cell C0 at the root is the entire plane, a suitable bounding
box, or the convex hull of all input segments. At every nonleaf node v in the BSP tree, a partition
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line decomposes the convex cell C into two cells, which correspond to the two children of v. The
cells at any level of the BSP tree correspond to a decomposition of C0 into convex subcell. In the
remainder of this paper, we assume that each problem is a pair (S, C), where S is a set of disjoint
line segments in a convex cell C.

(a) (b) (c) (d)

B I

f1

f2

C1
C2 C2 C2

Figure 1: (a) A set of disjoint line segments, including two free segments, f1 and f2,
in a cell C1 (b) A set of disjoint line segments, with no free segment, clipped in
a cell C2. (c) The boundary segments in C2. (d) The interior segments in C2.

Let S be a set of n disjoint open line segments lying in a convex cell C. Denote by ∂C the
boundary of C. We distinguish three types of segments in a problem (S,C). A segment s ∈ S is

• a free segment if both endpoints lie on ∂C (Fig. 1(a));
• a boundary segment if one endpoint lies on ∂C (called outer endpoint) and the other endpoint

lies in the interior of C (called inner endpoint) (Fig. 1(bc));
• an interior segment if s lies in the interior of C (Fig. 1(bd)).

We denote the sets of free, boundary, and interior segments by F , B, and I, respectively. We can
split the problem into two subproblems along a free segment f ∈ F . A partition along a free segment
is called a free cut: it does not increase the total number of fragments and it partitions the problem
into two strictly smaller subproblems (since f does not belong to either open halfplane). In our
algorithms, we always partition a problem along any possible free segment, and so we may assume
that F = ∅, hence S = B ∪ I.

After performing the partition steps up to a certain depth of a BSP tree, we have a decomposition
of the plane into convex cells. Each fragment of an input segment s ∈ S lies either in the interior
or on the boundary of some convex cells. A fragment on the boundaries of cells is not part of any
subproblem. A fragment that traverses a cell is a free segment and will not be further partitioned.
So every surviving fragment of s is incident to an endpoint of s, and it is either an interior segment
(if the entire segment lies in the interior of a cell) or a boundary segment (if exactly one endpoint lies
in the interior of the cell). Our BSP for S is constructed by the repeated application of algorithm
SubBSP(B, C, k) presented in the following lemma.

Lemma 3. Let S be a finite set of disjoint line segments in a convex cell C. For every k, 1 ≤ k ≤ |B|,
there is a binary plane partition SubBSP(B, C, k) such that

• every boundary segment is cut at most O(1) times;
• every interior segment is cut at most O(k) times;
• every cell produced by SubBSP(B, C, k) intersects less than |B|/k segments in B.
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Notice that the interior segments in cell C are not part of the input of SubBSP(B,C, k). When
constructing SubBSP(B, C, k), we can ignore the interior segments. We establish the property that
SubBSP(B, C, k) cuts every interior segment O(k) times based on the fact that every interior segment
is disjoint from the boundary segments.

2.1 BSPs along a conformal path

The basic building block of SubBSP(B,C, k) is a recursive plane partition along the edges of a simple
path. Consider a finite set B of disjoint boundary segments in a convex cell C. Direct every boundary
segment b ∈ B from its outer endpoint to its inner endpoint. Let −→b be the ray starting from the
outer endpoint of b and containing b; and let b be the directed line segment along −→b from the outer
endpoint of b to the first intersection point with another boundary segment or with ∂C.

Definition 4. Given a set B of boundary segments in a cell C, a simple directed polygonal path
β = (u0, u1, . . . , ut) for some t ∈ N is conformal if

• for every j = 1, 2, . . . , t, there is a boundary segment bj ∈ B such that uj−1uj ⊂ bj;
• the portions of segments bj between the outer endpoint of bj and point uj have disjoint relative

interiors. (See Fig. 2.)

The algorithm ChainBSP(β) below successively partitions the plane along the supporting lines
of the edges of a conformal path β in reverse order (Fig. 2(ab)). Its input is conformal for an
underlying problem (S,C). However, ChainBSP(β) will be a subroutine of a larger BSP algorithm,
and we assume that when we call ChainBSP(β), the cell C (in which β is conformal) may have been
decomposed into convex subcells and β does not necessarily lie in a single subcell.

Algorithm 1. ChainBSP(β)

Input: a conformal path β = (u0, u1, . . . , ut) such that for j = 1, 2, . . . , t, there is a boundary segment
bj ∈ B with uj−1uj ⊂ bj

For j = 0, 1, . . . , t− 1 do:

• partition every cell that intersects the line segment between the outer endpoint of bt−j and point
ut−j by the supporting line of bt−j.

Proposition 5. For a conformal path β = (u0, u1, . . . , ut), ChainBSP(β) cuts every boundary segment
at most once. Specifically, only the first step, a partition along the supporting line of ut−1ut, may
cut boundary segments.

Proof. In the first step of ChainBSP(β), the partition along the supporting line of bt may cut other
boundary segments. In any subsequent step, a partition along the supporting line of bt−j , j =
1, 2, . . . , t− 1, cuts only those segments in S that cross the part of bt−j between the inner endpoint
of bt−j and point vt−j . Since that bt−j does not cross any boundary segment, these partition steps
do not cut boundary segments.

However, ChainBSP(β) for a conformal path β = (u0, u1, . . . , ut), may cut interior segments up
to t times: For example if (1) β is a zig-zag path, which alternately turns left and right (Fig. 2(a));
or if (2) for j = 1, 2, . . . , t, the part of bj between the inner endpoint of bj and uj crosses an interior
segment (Fig. 2(b)).

In Subsection 3.6, we will “simplify” a conformal path β to another conformal path δ, and show
that ChainBSP(δ) cuts every input segment O(1) times. We will also see the simplified path δ
preserves some important properties of β.
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Figure 2: ChainBSP(β) for a conformal path β = (u0, u1, . . . , ut)
may cut some interior segments up to t times.

3 Proof of Lemma 3

Let B be a set of m boundary segments in a convex cell C, and let k be an integer, 1 ≤ k ≤ m.
In this section, we construct algorithm SubBSP(B, C, k) described in Lemma 3. The construction of
SubBSP(B, C, k) is composed of several steps. In Subsection 3.1, we construct polygonal paths αi,
each starting from the outer endpoint of a boundary segment (these paths are pairwise non-crossing
but may partially overlap). In Subsection 3.2, we select a subset of these paths that decompose
cell C into faces, each of which intersects at most m/(2k) − 1 boundary segments. The union of
the selected paths may consist of several connected components. We reduce the problem to a single
connected component in Subsection 3.3. We decompose the union of the paths αi into a collection
of non-overlapping conformal paths βi in Subsection 3.5, and simplify each path to conformal paths
δi in Subsection 3.6. We construct algorithm SubBSP(B, C, k) as a concatenation of subroutines
ChainBSP(δi) for the simplified paths δi.

3.1 Polygonal paths

Label the boundary segments arbitrarily as B = {s1, s2, . . . , sm}. We successively extend every
boundary segment si along −→s i until the extension hits another segment, the boundary of C, or a
previous extension.

Algorithm 2. ConvexPartition(B)
For i = 1 to m, do:

• Let ext(si) be the line segment along −→s i between the inner endpoint of si and the first point
along −→s i that lies in (

⋃m
j=1 sj) ∪ (

⋃i−1
j=1 ext(sj)) ∪ ∂C.

We say that ext(si) is the extension of segment si; and the union ŝi = si ∪ ext(si) is an extended
segment of si for i = 1, 2, . . . m. It is clear that si ⊂ ŝi ⊆ si. By construction, the relative interiors of
the extended segments ŝi, si ∈ B, are pairwise disjoint. Direct each ŝi from the outer endpoint of si

(tail) to its other endpoint (head). The head of each ŝi lies either in the relative interior of another
extended segment ŝi or on ∂C. For each si ∈ B, we construct a path αi that follows the directions
of the extended segments (refer to Fig. 3(b)). The following algorithm computes the vertices of αi.
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Algorithm 3. PathBuilder(i, R)
Let the first vertex of αi be the outer endpoint of si, and let s := ŝi.
Until the head of s lies along ∂C or in the relative interior of a previous edge of αi.

• Append the head of segment s to αi,
• Let b ∈ B be the boundary segment such that the head of s lies in the relative interior of b̂, and

set s := b̂.

s1

α1

s2

α2

s4

α3

α4

(a) (b) (c)

s3

ϕ

Figure 3: (a) A set of boundary segments (interior segments are not displayed). (b) The boundary
segments are successfully extended in an arbitrary order. (c) Paths αi, for segments si, 1 ≤ i ≤ 4.

It is clear that each αi fully contains segment si, and its only possible self-intersection is at its
last vertex. The paths αi are pairwise noncrossing, but they may overlap with each other. We prove
a few structural properties of the αi’s.

Proposition 6. If a path αi, 1 ≤ i ≤ m, terminates at a point q in the interior of C, then αi is
composed of a conformal path α′i from the outer endpoint of si to q, and a directed convex cycle ϕi.

Proof. The portion α′i of path αi from the outer endpoint of si to point q is simple by construction.
Path αi terminates at a point q in the interior of C only if α′i has already passed through q, and so
α \ αi is a simple cycle. Let ϕi = α \ α′i. It remains to prove that cycle ϕi is convex. Let

Ri =
⋃
{ŝj : αi ∩ ŝj 6= ∅}

denote the union all extended boundary segments visited by path αi Note that Ri is the union of
line segments b̂j whose endpoints lie either on ∂C or in the relative interior of another segment in
Ri. It follows that Ri decomposes C into convex faces. Cycle ϕi is the boundary of one of these
faces, and so it is convex.

In order to handle all cases uniformly, we define ϕi for every path αi. If a path αi terminates at
a point τi ∈ ∂C, then we let ϕi = τi be a degenerate convex cycle, otherwise ϕi is a (nondegenerate)
convex cycle lying in the interior of C.

Proposition 7. For every 1 ≤ i < j ≤ m, if paths αi and αj intersect, then ϕi = ϕj.
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Proof. Suppose αi and αj , i < j, intersect. Let q be the first point along αi that is part of αj . If
q ∈ α′j , then αi follows α′j from q to the cycle ϕj and then follows ϕj , making a full turn around ϕj .
If q ∈ ϕj , then αi follows ϕj , making a full turn around ϕj . In both cases, we have ϕi = ϕj .

Proposition 8. Let ψ = (u0, u1, . . . , ut) be a subpath of α′i for some 1 ≤ i ≤ m. Then the ray −−−−→ut−1ut

cannot cross path ψ.

Proof. Assume to the contrary that ray −−−−→ut−1ut crosses path ψ. Let x be their first intersection point
along −−−−→ut−1ut. Let D be the simple polygon bounded by the portion of ψ from x to ut and by segment
utx. It lies in the interior of C.

Let π be the portion of αi from ut to the last vertex of αi. We claim that π lies inside polygon
D. Suppose, to the contrary, that path π crosses ∂D, and let y be the first point where π leaves D.
Since both π and ψ are part of αi, we have y ∈ utx. Since π ⊂ αi, there is a boundary segment
s ∈ B such that y ∈ ŝ and ŝ enters the exterior of D at y. Segment ŝ comes from ∂C, and so it has
to enter D before it leaves D at y. Hence ŝ crosses path ψ: a contradiction, which proves the claim.

If π remains inside D, then the convex cycle ϕi ⊂ π also lies inside D. Now let y be the closest
vertex of ϕi to the supporting line of utx, and let e be the directed edge of ϕ incident to y. Since
π ⊂ αi, there is a boundary segment s ∈ B such that e ⊂ ŝ and ŝ has the same direction as ϕ.
Therefore, the part of ŝ between the outer endpoint of s and y has to cross path ψ. A contradiction,
which proves that −−−−→ut−1ut cannot cross path ψ.

3.2 Selecting paths

Let R =
⋃m

i=1 αi be the union of all paths αi, i = 1, 2, . . . , m. For every subset P ⊆ {1, 2, . . . , m}, let
RP =

⋃
i∈P αi. The diagram RP decomposes cell C into a set FP of faces, which are the connected

components of C \ RP (see Fig. 3(c)). Two faces are adjacent if their boundaries intersect; they
are adjacent along the boundary if they are both incident to an outer endpoint of some boundary
segment si, i ∈ P . We define a dual graph GP , where the nodes correspond to the faces in FP , and
two nodes are adjacent if and only if the corresponding faces are adjacent along the boundary. Note
that GP is not necessarily connected: every face of FP in the interior of C corresponds to an isolated
node in GP .

Proposition 9. Let P ⊂ {1, 2, . . . , m} with i 6∈ P , and let P ′ = P ∪{i}. Then FP ′ can be constructed
from FP by splitting the face in FP incident to the outer endpoint of si into two faces.

Proof. Path αi starts from the outer endpoint of si, this point is disjoint from RP . First assume that
αi is disjoint from RP . It is either a simple path connecting two points on ∂C, or a composition of
a convex loop ϕi in the interior of of C and a simple path α′i between ∂C and ϕ. In either case, the
insertion of αi splits a face of FP into two faces. Next assume that αi intersects RP . If it intersects
some path αj , j ∈ P , then ϕi = ϕj , and so the part of αi that is disjoint from RP is a simple path
connecting two points on the boundary of a face in FP . Again, the insertion of αi splits a face of FP

into two faces.

Corollary 1. The subdivision FP has |P |+ 1 faces.

Proof. We can construct the diagram RP by successively inserting the paths αi, i ∈ P . By Proposi-
tion 9, the insertion of each path αi, i ∈ P , increases the number of faces by one.

A path αi does not properly cross any boundary segment. If αi intersects a boundary segment
sj , then it follows sj to the head of ŝj . So every boundary segment intersects (the interior of) at
most one face in FP . The following algorithm selects a set P ⊂ {1, 2, . . . ,m} by elimination, for a
given integer k ∈ N, such that each face in FP intersects at most m/(2k)− 1 boundary segments.
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Algorithm 4. PathSelector(B, C, k)
Let P := {1, 2, . . . , m}.
For i = 1 to m, do

• If the faces of FP incident to the outer endpoint of si jointly intersect at most m/(2k) − 2
boundary segments, then let P := P \ {i}.

Output P .

Proposition 10. Let P = PathSelector(B, C, k).

• Every face f ∈ FP intersects at most m/(2k)− 1 boundary segments.
• If f1, f2 ∈ FP , f1 6= f2, are adjacent along the boundary, then they jointly intersect at least

m/(2k)− 1 boundary segments.

Proof. Initially, we have P = {1, 2, . . . , m}, and no face in FP intersects any boundary segment.
Whenever index i is removed from P , two faces are merged into one face, which intersects at most
m/(2k)− 1 boundary segments (the boundary segments intersecting the two faces and segment si).

Let f ′1 and f ′2 be the faces in FP incident to the boundary endpoint of si at step i of Algorithm
PathSelector(B,C, k). By Proposition 9, the removal of index i from P would merge faces f ′1 and
f ′2 into a single face, which would also intersect the segment si. If index i is not removed from P ,
then the faces f ′1 and f ′2 jointly intersect at least m/(2k)− 1 boundary segments at that time. Even
if PathSelector(B, C, k) later merges f1 and f2 with other faces, the two faces f1 and f2 incident
to the outer endpoint of si jointly intersect at least m/(2k)− 1 boundary segments.

3.3 Dual graphs of connected components

We define another dual graph, this time on the connected components of RP (refer to Fig. 4). Let
HP be a graph whose nodes correspond to the connected components of RP , two nodes are connected
by an edge if and only if the corresponding components are adjacent to the same face in FP .

The boundary of a face in FP consists of portions of some connected components of RP and
portions of ∂C. If a face f ∈ FP is adjacent to h components of RP , then ∂f contains h connected
portions of ∂C. A chord between two arbitrary points in two distinct portions of ∂C along ∂f
separates some components of RP . It follows that graph HP is a tree, since it is connected and every
edge is a bridge.

(a) (b) (c)

root

1

2

3

4

5

0

HP
R

1

2

3 4

5

0
C

Figure 4: (a) The components of R in a cell C. (b) The convex hull of each component of R (light gray),
and chords of ∂C separating each component from the root (dotted lines). (c) The dual graph HP .
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For any set P ⊆ {1, 2, . . . , m}, each connected component of RP is either a directed tree (consist-
ing of paths αi that all terminate at the same point τ ∈ ∂C), or a directed cycle and directed trees
entering the cycle (consisting of paths αi that all terminate in a convex cycle ϕ). Each connected
component of R =

⋃m
i=1 αi contains at most one component of RP .

Choose an arbitrary component R0 ⊆ RP , and let R0 be the root in the graph HP . For every
component R′

P ⊂ RP , R′
P 6= R0, let R′ be the unique component of R containing R′

P , and let e(R′) be
the edge of conv(R′) that separates R′ from R0 in C. The chords e(R′

P ) for the nonroot components
R′

P ⊂ RP decompose C into convex regions, which we call sectors. Each sector contains exactly one
component of RP . We can separate the sectors by making a cut along e(R′

P ) for every component
R′

P ⊂ RP , R′
P 6= R0.

The following lemma establishes a link between the dual graph GP defined on the faces FP of
C \RP and the dual graph HP defined on the sectors of C.

Lemma 11. Let P = PathSelector(B, C, k), and let Q1, Q2, . . . , Q` be connected components of
RP that correspond to a simple path in the dual graph HP . Then Q1, Q2, . . . , Q` jointly contain at
most 10k paths αi, i ∈ P .

Proof. If m ≤ 10k, then our proof if complete. Assume m > 10k. Suppose that Q1, Q2, . . . , Q`

contains h1, h2, . . . , h` ∈ N paths αi, respectively, with h =
∑`

j=1 hj . We need to show that h ≤ 10k.
Consider the faces in FP that are adjacent to a component Qj , for some 1 ≤ j ≤ `. If Qj is a directed
tree, consisting of paths αi that all terminate at the same point τ ∈ ∂C, then Qj is adjacent to hj +1
faces in FP , and they span a path in GP . If Qj consists of paths αi that all terminate in a convex
cycle ϕ in the interior of C, then Qj is adjacent to hj + 1 faces in FP , one of which is an isolated
node and hj ≥ 2 faces span a cycle in GP .

Since Qj and Qj+1 are adjacent in HP , there is one common face adjacent to both Qj and Qj+1.
The faces adjacent to two consecutive components are distinct. The set of all faces of FP adjacent
to Q1, Q2, . . . , Q` form a chain of paths and cycles in GP , such that every two consecutive paths or
cycles share a distinct node. Let G′

P denote this subgraph of GP . It has (
∑`

j=1 hj)− (`− 1) ≥ dh/2e
nodes. It contains a matching that covers at least half of its nodes, at least dh/4e nodes in G′

P .
Apply Proposition 10 for each of the dh/4e disjoint pairs of faces in the matching in G′

P . Then
the faces corresponding to G′

P intersect at least dh/4e·(m/(2k)−1) ≤ hm/(10k) boundary segments.
There are m boundary segments in total. This gives hm/(10k) ≤ m and h ≤ 10k, as required.

3.4 Reduction to a single component of RP

In Section 3.2, we have selected a set of indices P ⊆ {1, 2, . . . , m} such that every face in FP intersects
at most m/(2k)−1 boundary segments. The diagram RP =

⋃
i∈P αi may consist of several connected

components. In this section, we separate the component of RP from each other, and reduce to a
single component. Recall that each component of R′

P lies in a unique sector of cell C. For a single
component R′

P ⊆ RP , we will prove the following lemma.

Lemma 12. Let R′
P be a connected component of RP containing h ∈ N paths αi. Let C ′ ⊆ C be the

sector of C that contains R′
P . There is a BSP algorithm CompBSP(B,C ′, R′

P ) such that

(i) every boundary segment lying in C ′ is cut O(1) times;
(ii) every interior segment is cut at most O(h) times;
(iii) every cell produced by CompBSP(B,C ′, R′

P ) intersects less than m/k boundary segments.

We can now compose the partition algorithm SubBSP(B,C, k) from CompBSP(B, C ′, R′
P ).

9



Algorithm 5. SubBSP(B, C, k)
1. for every nonleaf component R′

P ⊆ RP in HP , partition along chord e(R′
P ).

2. For every component R′
P ⊆ RP , call CompBSP(B,C ′, R′

P )

Proof of Lemma 3: The chords e(R′
P ) for all components R′

P of RP decompose C into convex sectors,
each of which contains a unique component of RP . Consider a boundary segment b ∈ B. Since the
chords between sectors do not cross any boundary segment, b lies in a unique sector. Assume that b
lies in a sector C ′ containing component R′

P ⊆ RP . By Proposition 16, CompBSP(B, C ′, R′
P ) cuts b

at most O(1) times.
Consider an interior segment s ∈ S. Assume that s intersects the sectors C1, C2, . . . , C` containing

components Q1, Q2, . . . , Q` of RP , respectively. These sectors correspond to a simple path in the
dual graph HP . By Lemma 11, they jointly contain at most 10k paths αi, i ∈ P . By Proposition 16,
if Qj contains hj paths αi, i ∈ P , then CompBSP(B,Cj , Qj) cuts s at most O(hj) times. So s is cut∑q

i=1 O(hj) = O(k) times.
By Lemma 12, every cell produced by CompBSP(B, C ′, R′

P ) intersects less than m/k boundary
segments. ¤

3.5 Processing one components of RP

Consider a connected component R′
P of RP . Let R′ be the component of R containing R′

P . We may
assume (by relabeling the paths αi if necessary) that R′

P is the union of the paths α1, α2, . . . , αh;
and R′ is the union of the paths α1, α2, . . . , αr for 1 ≤ h ≤ r ≤ m. Recall that R′

P =
⋃h

i=1 αi is a
collection of directed trees entering a directed cycle ϕ, where ϕ is either a point on ∂C or a convex
cycle in the interior of C.

Decomposing R′
P into non-overlapping paths. Every vertex in R′

P has out-degree one. Let
Q ⊂ R′

P be a set of all vertices of degree at least three (empty dots in Fig 5(b)). The deletion of
all points in Q decomposes R′

P into conformal paths. Denote by Γ the set of these paths, and let
g = |Γ|. By construction, if two paths in Γ intersect, then they intersect only at their first or last
vertex. We show that h ≤ g ≤ 2h + 1. The paths αi, i = 1, 2, . . . , h, start from distinct points on
∂C, hence h ≤ g. If R′

P is a tree with h leafs, rooted at τ ∈ ∂C, then R′
P decomposes into 2h − 1

paths. If R′
P contains a cycle ϕ in the interior of C, then R′

P decomposes into at most 2h + 1 paths.
Label the elements of Γ as follows: If R′

P is acyclic then it terminates at a point τ ∈ ∂C,
otherwise let τ be an arbitrary point in Q along the convex cycle ϕ. Traverse R′

P in reverse direction
starting from τ . At every point q ∈ Q, descend first along the path which is collinear with the
(unique) out-going edge at q. Label the directed paths by β1, β2, . . . , βg in the order in which they
are traversed.

The paths βi, i = 1, 2, . . . , g, are conformal. Since the union of the paths is the component
R′

P ⊆ RP , we can prove an additional property for each β ∈ Γ:

Proposition 13. Let (u0, u1, . . . , ut) be a sub-path of a path β ∈ Γ such that it makes a right (resp.,
left) turn at every internal vertex. Then the vertices u0, u1 . . . , ut are in convex position.

Proof. If β is part of the convex cycle ϕ, then the vertices u0, u1, . . . ut are in convex position. If β
is disjoint from ϕ, then the vertices u0, u1, . . . , ut are in convex position by Proposition 8.
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Figure 5: (a) A component R′P of RP , its convex hull conv(R′P ), and a chord e = e(R′P ). (b) R′P is
decomposed into non-overlapping simple paths βi, i = 1, 2, . . . , 7. (c) Regions ∆i for i = 1, 2, . . . , 7.

3.6 Path simplification

For every path β ∈ Γ, we compute a simplified path δ. If β is a straight line segment, then let δ = β.
Suppose that β has at least three vertices. The directed path β = (u0, u1, . . . , ut), t ≥ 2, makes either
a left or right turn at every internal vertex. In the remainder of this subsection, we assume that the
last turn is a right turn (the case that it is a left turn is analogous). Let γ = (u`, u`+1, . . . , ut) be the
maximal suffix path of β that makes right turns only. That is, β makes the last left turn of at u`, or
it makes no left turn at all. Since γ ⊆ β, it is a conformal path. By Proposition 13, the vertices of
γ are in convex position.

The following algorithm simplifies γ. In each step, it reduces the number of vertices by one. More
precisely, it replaces a subpath (a0, a1, a2, a3) by (a0, x, a3), where x is the intersection point of the
supporting line of a0a1 and a2a3, whenever the resulting path is still conformal.

Algorithm 6. Simplify(B, C, γ):

Input: a set B of boundary segments in a convex cell C, and a convex conformal path γ = (u`, u`+1, . . . , ut)
which makes right turns only.

Set δ := γ.

While δ has four consecutive vertices (a0, a1, a2, a3) such that there are boundary segments b1, b3 ∈ B
with a0a1 ⊂ b1 and a2a3 ⊂ b3; and the intersection point x of the supporting line of b1 and b3 lies in
the part of b3 between the outer endpoint of b3 and a2, do:

• replace the subpath (a0, a1, a2, a3) by (a0, x, a3) in δ.

Output: δ.

We can now prove the main properties of the simplified path δ.

Proposition 14. The first (resp., last) vertex of both γ and δ =Simplify(B, C, γ) is u` (resp., ut).
The supporting lines of first (resp., last) edge of γ and δ are the same.

Proof. Initially algorithm Simplify(B, C, γ) sets δ = γ. The algorithm does not change the first
and the last vertex of the path. They also do not change the supporting line of the first and the last
edge.
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Figure 6: (a) A conformal path β = (u0, u1, . . . , u12). The vertices of γ = (u2, u3, . . . , u12) are in
convex position. (b) The simplified path δ =Simplify(B,C, γ) = (v0, v1, . . . , v7).

For a directed line segment s, let s− (resp., s+) denote the closed halfplane bounded by the
supporting line of s, lying on left left (resp., right) of s.

Proposition 15. If γ is a convex conformal path, then δ =Simplify(B, C, γ) is also a convex
conformal path.

Proof. If γ has two vertices, then δ = γ, and there is nothing to prove. Suppose that γ =
(u`, u`+1, . . . , ut) has at least three vertices. Initially algorithm Simplify(B,C, γ) sets δ = γ, so
δ is conformal. Every step of the algorithm preserves the property that δ is conformal. Since γ
makes a right turn at internal vertices, we have bj ⊂ b−j+1 for every j = `, ` + 1, . . . , t− 1. Moreover,
if bj intersects bj′ , ` ≤ j < j′ ≤ t, then bj ⊂ b−j′ . These properties are also preserved in every step of
Simplify(B, C, γ), and so the vertices of the output δ are also in convex position.

Proposition 16. If γ is a convex conformal path and δ =Simplify(B, C, γ), then ChainBSP(δ) cuts
every interior segment O(1) times.

Proof. If γ has two vertices, then δ = γ, and ChainBSP(δ) partition along only one line. Consider
a conformal convex path γ with at least three vertices. By Proposition 15, δ is a convex conformal
path. Let δ = (v0, v1, . . . , vz) and let bj ∈ B denote the boundary segment such that vj−1vj ⊂ bj , for
j = 1, 2, . . . , z. Denote by b̂j the part of bj between the outer endpoint of bj and vj−1 (Fig. 7(a)).

Algorithm ChainBSP(δ) cuts every segment that crosses the supporting line of bz, the convex path
δ, or segments b̂j for j = 1, 2, . . . , z. Let s ∈ I be an interior segment. The supporting line of bz and
the convex path δ jointly cut s at most 3 times, into at most 4 subsegments. Let s′ ⊆ s be one of
these subsegments. It is enough to show that s′ crosses O(1) segments b̂j .

Path δ and segments b̂j decompose C into regions, each of which is adjacent to exactly two
segments b̂j , and all but one are adjacent to two consecutive segments b̂j and b̂j+1. It is enough to
show that s′ crosses at most two consecutive segments b̂j .

Suppose, by contradiction, that s′ crosses three consecutive segments b̂j , b̂j+1, and b̂j+2. Since γ

makes a right turn at vj−1 and vj , we have b̂j+1 ⊂ b+
j and b̂j+2 ⊂ b+

j+1. Therefore, s′ crosses both
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Figure 7: (a) Path δ; an internal segment s ∈ I crosses three consecutive segments b̂j ,
b̂j+1, and b̂j+2. (b) The last edge of βi = (u0, u1, u2) is collinear

with the first edge of βj . Domain ∆i′′ is in ∆j but disjoint from ∆i.

b̂j+1 and b̂j+2 in the halfplane b+
j ; and the supporting line of bj intersects b̂j+2. Denote by x this

intersection point.
Note that b̂j cannot intersect b̂j+2, otherwise Simplify(B, C, γ) would have simplified the subpath

(vj−1, vj , vj+1, vj+2) to (vj−1, x, vj+2) (Fig. 7(a)). Hence, bj starts from the outer endpoint of bj , it
extends beyond vj but ends before reaching x. So some boundary segment intersects segment vjx.
This boundary segment is either bj+2 (which may extend beyond x) or it separates b̂j+1 from b̂j+2

in the halfplane b+
j . Since s′ is disjoint from all boundary segments, it cannot reach b̂j+2. A

contradiction, which completes our proof.

The union of all simplified paths
⋃g

i=1 δi decomposes sector C ′ into a set F ′
P of faces, which are

the connected components of C \⋃g
i=1 δi.

Proposition 17. Every (open) face f ∈ FP intersects at most m/(2k)− 1 boundary segments.

Proof. The paths γi ∈ Γ and δi =Simplify(B, C, γi) have the same endpoints (Proposition 14), so
if δi 6= γi, then they bound a nonempty region in the plane. Since both of them are conformal,
they do not cross any boundary segment, and so the interior of the region bounded by γi and δi is
disjoint from boundary segments. The faces in FP , bounded by

⋃g
i=1 γi, and they intersect at most

m/(2k) − 1 boundary segments, and so the faces in F ′
P , bounded by

⋃g
i=1 δi, also intersect at most

m/(2k)− 1 boundary segments.

3.7 Proof of Lemma 12

We can now present the BSP algorithm CompBSP(B, C ′, R′
P ).

Algorithm 7. CompBSP(B,C ′, R′
P ):

For i = 0, 1, 2, . . . , g, apply ChainBSP(δi).

We will show that CompBSP(B, C ′, R′
P ) satisfies properties (i)–(iii) in Lemma 12. For every path

βi ∈ Γ, we define a closed polygonal domains ∆i. If βi is a line segment, then let ∆i = βi (a
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degenerate domain). If βi has at least three vertices, then assume that it makes a right turn at its
last internal vertex (the case that it makes a left turn is analogous). Hence, γi and the simplified
path δi make right turns only. Let δi = (v0, v1, . . . , vz), such that v0v1 ⊂ b̂1, and point vz lies in
the relative interior of the extended boundary segment b̂z+1. Let ∂iC denote the counterclockwise
portion of ∂C between the outer endpoints of b1 and bz+1. Let ∆i be the polygonal domain bounded
by segment b̂1, path δi, segment bt+1, and ∂iC (Fig. 6). We observe a few immediate consequences
of the definition.

Proposition 18. For every path βi ∈ Γ, ∆i fully contains every boundary segment incident to ∂iC;
and it does not intersect any other boundary segment. ¤

Proposition 19.
(i) For 1 ≤ i < j ≤ g, the domains ∆i and ∆j are either interior disjoint or we have ∆j ( ∆i.
(ii) If ∆j ( ∆i, then j > i.

Proof. Part (i) follows from the fact that the extended boundary segments have pairwise disjoint
relative interiors. Part (ii) follows from the ordering of the paths γi and γj in Γ.

For every i = 1, 2, . . . , g, let

Di = ∆i \

⋃

i<j

∆j




be the part of ∆i remaining after removing all domains ∆j nested in ∆i.

Proposition 20. Let βi = (u0, u1, . . . , ut) ∈ Γ, and γi = (u`, u`+1, . . . , ut). Then (u0, u1, . . . , u`) ⊂
Di.

Proof. Path δi is on the boundary of ∆i by definition. It is the simplification of γi = (u`, u`+1, . . . , ut),
with u` = v0 and u`u`+1 ⊆ v0v1 (Proposition 14). Assume w.l.o.g. that γi makes right turns only.
Path β does not cross any path δj , j = 1, 2, . . . g. Since β makes a left turn at u`, its initial portion
(u1, u2, . . . , u`) lies in ∆i. Its relative interior is disjoint any domain ∆j , ∆j ⊆ ∆i, and so it must
remain in Di.

Proposition 21. All boundary segments that intersect a cell produced by CompBSP(B,C ′, R′
P )

• either intersect one face of F ′
P ; or

• intersect two adjacent faces of F ′
P or the boundary between those faces.

Proof. CompBSP(B, C ′, R′
P ) makes cuts along the portion of ∂∆i lying in the interior of C. So every

cell produced by CompBSP(B,C ′, R′
P ) is contained in a face of the arrangement of the boundaries

∂∆i, for all i = 1, 2, . . . , g. If a face in this arrangement lies outside of all domains ∆i, then it lies in
a face of F ′

P . Otherwise it lies in a domain Di for some i = 1, 2, . . . , g. By Proposition 20, the only
path in Γ that possibly intersects the interior of Di is γi, and so every domain Di is covered by at
most two faces of F ′

P (lying on two sides of path γi).

For i = 1, 2, . . . , g, let ĉi denote the extended boundary segment that contains the last edge of
βi. By Proposition 14, ĉi contains the last edge of δi. By Proposition 5, the only partition step of
ChainBSP(δi) that possibly cuts boundary segments is the partition along the supporting line of ĉi.
Therefore, the only partition steps in CompBSP(B, C ′, R′

P ) that possibly cut boundary segments are
the partitions along the supporting lines of ĉi, for i = 1, 2, . . . , g. We show next that every boundary
segment is cut in O(1) of these steps.
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Proposition 22. Suppose that the last vertex of βi ∈ Γ is the first vertex of βj ∈ Γ, and the last
edge of βi is collinear with the first edge of βj. Then the partition along the supporting line of ĉi does
not cut any boundary segment lying in any domain ∆i′ ( ∆j.

Proof. In the ordering of the paths in Γ, we have j < i. Assume first that βj is part of the convex
cycle ϕ. Then γj = βj , and the last edge of γj is collinear with the last edge of δi. ChainBSP(δj) is
performed before ChainBSP(δi), and so the cut along ĉi is restricted to the first edge of δj , it does
not cut any domain ∆i′ nested in ∆j .

Next assume that βj is not part of the convex cycle ϕ. Denote by b1 ∈ B be the boundary
segment whose extension contains the first edge of γi. The path b̂1 ∪ γi makes right turns only, and
by Proposition 8 its vertices are in convex position. Therefore, the supporting line of ĉi does not
cross b̂1 ∪ γi, and so it does not cut any boundary segment lying in ∆i.

Let ∆i′′ be a domain contained in ∆j but interior-disjoint from ∆i (Fig. 7(b)). By the ordering
of the paths in Γ, we have j < i < i′′. Suppose that the supporting line of ĉi crosses ∆i′′ , and let x
be the first point where −→c i enters ∆i′′ . Denote by b2 ∈ B the boundary segment whose extension
contains x. Path α2, which starts from the boundary segment of b2, passes through x and it contains
path βi (since the paths in Γ intersect only at their endpoints and i < i′′). By Proposition 8, applied
to the portion of path α2 from the outer endpoint of b2 to the last vertex of βi, the supporting line of
ĉi cannot cross α2. A contradiction, which implies that supporting line of ĉi does not cross ∆i′′ .

Proposition 23. Assume that a boundary segment s ∈ B is cut while algorithm CompBSP(B, C ′, R′
P )

runs subroutine ChainBSP(δi), for some 1 ≤ i ≤ g. Then

• either i = 1; or
• the last edge of δi is collinear with the first edge of some βj, j < i, and s ⊂ Dj.

Proof. If i = 1, then there is nothing left to prove. Assume i 6= 1. By Proposition 5, ChainBSP(δi)
can cut s only in a partition along the supporting line of ĉi. The last vertex of βi is the the last
vertex of at least another path βi′ ∈ Γ, and it is the first vertex of a path βj , with j < min(i, i′). If
the last edge of βi and the first edge of βj are not collinear, then j < i′ < i by the ordering of the
paths in Γ. Algorithm CompBSP(B, C ′, R′

P ) calls ChainBSP(δi′) before ChainBSP(δi). Therefore, the
cut along the last edge of βi does not extend beyond the last vertex of βi, and so it does not cross
any boundary segment. We conclude that the last edge of βi is the first edge of βj .

Since ChainBSP(δj) is called before ChainBSP(δi), the partition along the supporting line of the
last edge of δi can cut only those segments that lie in ∆j . By Proposition 22, it does not cut boundary
segments in any other domain ∆i′′ nested in ∆j . Hence, segment s must lie in Dj .

Proof of Lemma 12: By Proposition 5, the only step of ChainBSP(δi) that possibly cuts boundary
segments is the partition along the supporting line of ĉi. By Proposition 23, the partition along the
supporting line of ĉi can cut only those boundary segments that lie in Di, for i = 2, 3, . . . , g. Every
boundary segment lies in at most one domain Di. So every boundary segment may be cut once by
the partition along the supporting line of ĉ1; and once by the partition along the supporting line of
ĉi, for at most one of i = 2, 3, . . . , g. This proves part (i).

R′
P is the union of g ≤ 2h + 1 nonoverlapping paths βi, 1 = 1, 2, . . . , g. Every path βi was

simplified to a path δi. By Proposition 16, each ChainBSP(δi) cuts an interior segment O(1) times.
Hence, CompBSP(B, C ′, R′

P ) cuts every interior segment O(h) times. This proves (ii).
Consider a cell C ′′ ⊆ C ′ produced by CompBSP(B, C ′R′

P ). By Proposition 21, the boundary
segment that intersect cell C ′′ intersect one or two faces in FP , and the boundary between those
faces. By Proposition 10, each face of FP intersects at most m/(2k)− 1 boundary segments. So C ′′
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intersects at most 2(m/(2k) − 1) + 1 = m/k − 1 boundary segment: the segments intersecting two
adjacent faces in FP , and at most one boundary segment along the common boundary of the two
faces. This proves part (iii). ¤

4 Proof of Theorem 1

In this section, we apply SubBSP(B,C, k) repeatedly to construct a BSP of size O(n log n/ log log n)
for n disjoint segments in the plane. The input of algorithm BSP(S, C, k) below is a set S of n ≥ 1
of disjoint line segments lying in a convex cell C, and k is an integer. For a convex cell C ′, denote
by S(C ′) the set of the segments in S clipped in C ′, that is, S(C ′) = {s ∩ C ′ : s ∈ S, s ∩ C ′ 6= ∅}.
Algorithm 8. BSP(S, C, k)

1. If |B| > 0,

then call SubBSP(BS , C,min(|BS |, k)),

else partition C along the supporting line of an arbitrary segment s ∈ S.

2. For each cell C ′ produced in step 1 with S(C ′) 6= ∅, call BSP(C ′, S(C ′), k).

Lemma 24. For a set S0 of n disjoint line segments in a convex cell C0, BSP
(
S0, C0,

⌈
log n

log log n

⌉)
is

a BSP for S, and it partitions S into O(n log n/ log log n) fragments.

Proof. Let k = dlog n/ log log ne. We may assume w.l.o.g. that k ≥ 4. Let T be the tree of recursion
corresponding to algorithm BSP(S0, C0, k), where each node v corresponds to a subproblem (Sv, Cv)
for which we either call BSP(Sv, Cv, k) or partition along an arbitrary segment in Sv.

Consider a segment s ∈ S0. If s lies in the interior of C0, then there is a step v ∈ T in the recursion
where s is first cut into fragments. By Lemma 3, s it cut at most O(k) = O(log n/ log log n) times at
this step. If a fragment of s appears in any subsequent level of the recursion, then it is a boundary
segment whose inner endpoint is an endpoint of s. That is, at most two fragments of s occurs at
any level (all other fragments are free in their respective subproblems, and are not fragmented any
further). Since the surviving fragments of s may get shorter at each level of the recursion, we use
the endpoint of s for identifying which input segment it belongs to.

Motivation for a charging scheme. By Lemma 3, a boundary segment is cut at most O(1)
times in each level of the recursion It is enough to show that every boundary segment (identified
by an endpoint of an input segment) survives on average O(log n/ log log n) levels of the recursion.
The intuition for this is the following: If |B| = n and I = ∅, then the number of boundary segments
in the subproblems decreases by a factor of k. Hence after logk n = O(log n/ log log n) levels of the
recursion, we have no more boundary segments, and the BSP is complete. Unfortunately, we cannot
assume I = ∅: Each recursion step may cut some interior segments whose two extremal fragments
may become boundary segments in the subproblems.

In the remainder of the proof, we introduce a charging scheme that charges each event that a
partition line crosses a segment in BS to an endpoint of an input segment s ∈ S0. It is enough to
show that every segment endpoint is charged O(k) times.

The charging scheme. Let V (S0) be the set of the 2n endpoints of the n input segments. In
a top-down traversal of the recursion tree T , we will construct a collection A of pairwise disjoint
subsets of V (S0). We assign each subproblem (S,C) to a subset A ∈ A such that |BS | ≤ 4|A|.
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SubBSP(S, C, k) performs O(|BS |) cuts on the segments in BS . We charge these O(|BS |) cuts to the
endpoints in A, such that each endpoint in A is charged at most O(1) times. Finally we will show
that each segment endpoint in A is charged at most O(k) times.

For each subproblem (S, C), we recursively define the status of each boundary segment s ∈ BS

as juvenile, active, or retired. Along the way, we also select the pairwise disjoint sets in A, which are
the endpoints of the active segments in certain subproblems. Initially, all segments in BS0 are active
in the initial problem (S0, C0); let the first subset A0 ∈ A contain all inner endpoints of the segments
in BS0 , and the initial problem (S0, C0) is assigned to A0 ∈ A. If the status of every segment of
BS is already defined in a problem (S, C), then we can define the status of each segment in BS′ ,
where S′ is a child of S, as follows: Recall that every segment s′ ∈ BS′ is the part of some segment
s ∈ BS ∪ IS adjacent to an inner endpoint of s. If s′ ∈ BS′ comes from a segment s ∈ IS , then it
tentatively becomes juvenile. If s′ ∈ BS′ comes from a segment s ∈ BS , then it tentatively receives
the same status as s has in the subproblem (S,C).

• If fewer than half of the segments in BS′ are tentatively juvenile, then (i) each segment in
BS′ takes its tentative status (juvenile, active, or retired) and (ii) the subproblem (S′, C ′) is
assigned to the same set in A as its parent (S, C).

• If at least half of the segments in BS′ are tentatively juvenile, then (i) all tentatively retired
or active segments in BS′ become retired, (ii) all tentatively juvenile segments in BS′ become
active, (iii) we create a new set A ∈ A containing the inner endpoints of all tentatively juvenile
(i.e., active) segments in BS′ , and (iv) the subproblem (S′, C ′) is assigned to this new set
A ∈ A.

Each segment is charged at most O(k) times. When a set A ∈ A is created at a problem
(S,C), then A is a set of inner endpoints of the active segments, and all other segments in BS are
retired. In any subproblem assigned to A, every active or retired segment is part of a segment in BS .
Hence, at any level of the recursion, the total number of active segments in all subproblems assigned
to A is at most |A|. In problem (S, C), there are at most |A| retired segments in BS . Therefore,
at any level of the recursion, the total number of retired segments in all subproblems assigned to
A is at most |A|. In each subproblem assigned to A, there are fewer juvenile segments than retired
and active segments together. Therefore, at any level of the recursion, the total number of juvenile
segments in all subproblems assigned to A is less than 2|A|. Altogether, at any level of the recursion,
there are fewer than 4|A| segments in BS′ over all subproblems (S′, C ′) assigned to A. It is enough
to show that subproblems from at most O(k) different levels of the recursion are assigned to A.

Assume that problem (S,C) is assigned to A, and one of its children (S′, C ′) is also assigned to A.
If |BS | > 0, then BSP(S,C, k) calls SubBSP(BS , C, k). By Lemma 3, parts of at most |BS |/k segments
of BS become elements of BS′ . If S′ is still assigned to the same set A ∈ A, then |BS′ | ≤ 2|BS |/k,
since BS′ has at most |BS |/k segments coming from BS and at most the same number of segments
coming from IS . That is, the number of boundary segments in a subproblem decreases by a factor
of at least 2/k in each step of the recursion. We have |A| ≤ n, at the step where A is created, and
we also have |BS | ≤ n at that time. The cardinality of BS can decrease by a factor of 2/k at most
logk/2 n = log n/ log(k/2) = O(log n/ log log n) = O(k) times. This proves that subproblems from at
most O(k) levels are assigned to any set A ∈ A, and so each segment in A is charged at most O(k)
times.
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5 Auto-partitions

We have presented a BSP of size O(n log n/ log log n) for n disjoint line segments in the plane. In this
section, we show how to adjust this algorithm to obtain an auto-partition of size O(n log n/ log log n).
Our BSP repeatedly called algorithm SubBSP(B,C, k), which separated the sectors of the input cell
C along chords of ∂C and called ChainBSP(δi) for a sequence of carefully selected conformal paths
δi. There are essentially two reasons why our BSP may not be an auto-partition: First, a chord of
∂C is typically not collinear with any input segment. Second, ChainBSP(δ) might partition a cell
along a line spanned by a segment that is not present in that cell.
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Figure 8: (a) Two conformal paths δ1 = (u0, u1, . . . , u4) and δ2 = (v0, v1, . . . , v4). ChainBSP(δ1) is not an
auto-partition. ChainBSP(δ2) is an auto-partition. (b)–(c) Domains M1 and M2 both contain chord e.

Let δ = (v0, v1, . . . , vz) be a convex conformal path such that vj−1vj ⊂ bj for a boundary segment
bj ∈ B. Recall that ChainBSP(δ) partitions every cell that intersects the line segment between the
outer endpoint of bj and point uj by the supporting line of bj , for j = z, z − 1, . . . , 1. We call these
segments the generator segments of ChainBSP(δ). Every generator of ChainBSP(δ) contains an input
segment. Clearly, ChainBSP(δ) is an auto-partition if no generator segment is cut before ChainBSP(δ)
performs the partition along the supporting line of this generator. We can use ChainBSP(δ) as the
basic building block of an auto-partition if the paths δ satisfy some simple conditions.

Proposition 25. Let δ = (v0, v1, . . . , vz) be a convex conformal path. Assume that δ and the bound-
ary segments bj with vj−1vj ⊂ bj, for j = 1, 2, . . . , z, lie in a single cell. ChainBSP(δ) is an auto-
partition if the supporting line of bz does not cross the part of b1 between the outer endpoint of b1

and point v1.

Proof. After each partition step, all remaining generator segments of ChainBSP(δ) lie in a single
cell. Every cell is partitioned along a boundary segment in that cell, and so ChainBSP(δ) is an
auto-partition.

Proposition 26. Let γi ∈ Γ, and δi =Simplify(B, C, γi). Assume that δi = (v0, v1, . . . , vz) and the
boundary segments bj with vj−1vj ⊂ bj, for j = 1, 2, . . . , z, lie in a single cell. ChainBSP(δi) is an
auto-partition if

• γi is not part of the convex cycle ϕ, or
• γi is part of the convex cycle ϕ but the turning angle of γi at most 180◦.
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Proof. By Proposition 25, it is enough to check whether the supporting line of bz crosses the portion
of b1 between the outer endpoint of b1 and v1. The first part follows from Proposition 8. The second
part is immediate.

In particular, if RP has only one component (i.e., no cuts are made along chords of ∂C) and
it is a tree (all paths αi terminate in a point along ∂C), then SubBSP(B,C, k) is an auto-partition.
However, if RP has several components or contains cycles, then we adjust SubBSP(B, C, k) to obtain
an auto-partition. The following strengthening of Lemma 3 combined with Section 4 readily implies
Theorem 2.

Lemma 27. Let S be a finite set of disjoint line segments in the plane. For every integer k,
1 ≤ k ≤ |B|, there is an auto-partition SubAuto(B,C, k) such that

• every boundary segment in B is cut at most O(1) times on average;
• every interior segment in I is cut at most O(k) times;
• every cell produced by SubAuto(B,C, k) intersects at most |B|/k segments in B.

The proof of Lemma 27 is analogous to that of Lemma 3. As described in Subsections 3.1–3.3, we
compute the extensions of all boundary segments, the paths αi, a subset P = PathSelector(B, C, k),
and the dual graphs HP (which is a tree). Compute chords of ∂C that partition C into convex
sectors, each containing one component of R′

P . Even though we cannot make cuts along the chords,
we process each sector separately, in a bottom-up traversal of the tree HP . Lemma 12 is replaced
by the following lemma, using auto-partitions.

Lemma 28. Let P = PathSelector(S, C, k). Let R′
P be a connected component of RP containing

h ∈ N paths αi, and lying in sector C ′. There is an auto-partition CompAuto(B,C, R′
P ) such that

(i) every boundary segment is cut at most O(1) time on average;
(ii) every interior segment is cut at most O(h) times;
(iii) every cell produced by CompAuto(B,C, R′

P ) intersects less than |B|/k boundary segments lying
in sector C ′;

(iv) no partition line cuts chord e = e(R′
P ), and the resulting cell containing e contains no boundary

segment from sector C ′.

The last condition replaces the functionality of a cut along the chord e(R′
P ).

5.1 Processing an acyclic component of RP

Let R′
P be a connected component of RP in a sector C ′ ⊆ C, and let e = e(R′

P ) be the chord of ∂C,
which is an edge of the convex hull of the unique component R′ ⊂ R which contains R′

P . Chord e
lies in a convex face f ∈ F{1,2,...,m}. The two endpoints of e are the outer endpoints of two distinct
boundary segments, say s1 and s2 (Fig. 9). The paths α1, α2 ⊂ R′ start from these endpoints and
reach the convex cycle ϕ ⊂ R′

P . They follow the boundary of face f until they meet at some point
q ∈ ∂f . Augment R′

P with the paths α1 and α2 (if they are not already included in R′
P ). These

additional paths will establish part (iv) of Lemma 28.
If R′

P is a tree terminating at a point τ ∈ ∂C, then CompBSP(B,C ′, R′
P ) is an auto-partition. Let

CompAuto(B, C ′, R′
P ) =CompBSP(B, C ′, R′

P ). Parts (i)–(iii) of Lemma 28 follow from Lemma 12, it
remains to prove part (iv). When we decompose R′

P into a set Γ of non-overlapping paths, the portion
of α1 (resp., α2) from ∂C to point q is the union of some paths in Γ (Fig. 9). These conformal paths
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Figure 9: The convex face f ∈ F{1,2,...,m} containing chord e, and the paths α1 and α2.

are already convex (since they lie on the boundary of a convex face f), so they are not truncated
only simplified. So CompBSP(B, C ′, R′

P ) produces a subcell that contains f but does not intersect any
boundary segment from sector C ′. By Proposition 23, the interior of face f and chord e are not cut
by any ChainBSP(δi) during CompBSP(B, C ′, R′

P ).

5.2 Processing a cyclic component of RP

Now consider the case that component R′
P ⊆ RP contains a cycle ϕ lying in the interior of sector

C ′. Similar to the previous case, we augment R′
P with the paths α1 and α2 that start from the two

endpoints of chord e.
We will partition R′

P into two trees, T1 and T2, such that each of CompBSP(B,C ′, T1) and
CompBSP(B,C ′, T2) is an auto-partition (however performing both of them successively may not be an
auto-partition). The domains M1 and M2, associated to the two trees, will jointly cover all boundary
segments. For i = 1, 2, CompBSP(B, C ′, Ti) partitions ∆i into cells that each intersect at most |B|/k
boundary segment. We perform CompBSP(B,C ′, Ti) for the tree where ∆i contains at least half of the
boundary segments from sector C ′. We recursively call SubAuto(B′′, C ′′, k) in the resulting cells C ′′

that still intersect more that |B|/k boundary segments from sector C ′. At each level of this recur-
sion, every remaining boundary segment is cut at most O(1) times. So throughout this recursion, a
boundary segment is cut on average at most O(

∑∞
i=0(

1
2)i) = O(1) times. If sector C ′ contains O(m′)

boundary segments, then CompBSP(B,C ′, Ti) cuts an interior segment O(m′/(m/k)) = O(km′/m
times. Since at most half of the boundary segments survive each recursive call, altogether an interior
segment is cut O( k

m

∑∞
i=0(

1
2m′)i) = O(km′/m) times in sector C ′.

We now describe how to decompose R′
P into two trees T1 and T2. Suppose that ϕ makes right

turns only (the case that is makes left turn only is analogous). The interior of ϕ is disjoint of boundary
segments, we will cover the region between ∂C and ϕ by two polygonal domains, each of which is
adjacent to chord e. Let ϕ = (u1, u2, . . . , ut), and denote the extended boundary segments along
ϕ by b̂1, b̂2, . . . , b̂t such that uj−1uj ⊂ b̂j (where u−1 = ut). The t boundary segments decompose
∂C into t arcs. We may assume w.l.o.g. that the arc between b1 and b2 contains chord e. Let `,
1 < ` < t be the largest index such that the supporting line of b` does not cross b̂1. It follows that
the supporting line of b`+1 crosses b̂1, and so the supporting line of b1 does not cross b̂` (Fig. 8(bc)).

Let M1 be the polygonal domain bounded by b̂1, path (u1, u2, . . . , u`), and b̂`+1; and let M2 be
the domain bounded by b̂`+1, path (u`, u`+1, . . . , u1), and b̂2. Note that both domains contain chord
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e, and every boundary segment lies in at least one of the two domains. Let T1 and T2 be the part of
R′

P clipped in M1 and M2, respectively.
The first partition step of CompBSP(B,C ′, T1) is made along the supporting line of b`. The first

partition step of CompBSP(B, C ′, T2) is made along the supporting line of b2. Neither partition line
crosses chord e, and both CompBSP(B, C ′, T1) and CompBSP(B,C ′, T2) are auto-partitions. We perform
the one for which domain Mi contains more boundary segments.

6 Construction of a BSP in O(n polylog n) time

Our algorithm BSP(S) is composed of repeated calls to SubBSP(B,C, k), with k = dlog n/ log log ne.
The input of SubBSP(B, C, k) is a set of boundary segment in a convex cell C. It returns a BSP
tree, which stores the recursive cuts along partition lines that decompose C into convex subcells.
SubBSP(B, C, k) does not compute, however, how the interior segments are fragmented. If an interior
segment is cut, then its fragments are free segments or boundary segments in the subproblems. For
each resulting cell C ′, algorithm BSP(S, C) calls SubBSP(BS(C′), C

′, k), so we need to compute how
the interior segments are fragments.

While constructing a BSP tree for S, we maintain the set of boundary and interior segment for
each cell in a data structure. For each call to SubBSP(B, C, k), we extract the set B of boundary
segments with respect to C from this data structure. When SubBSP(B,C, k) returns a BSP tree for
cell C, we record the effect of the binary cuts in this data structure. We use the data structure of
Ishaque et al.[19] that supports so-called ray shooting-and-insertion queries among disjoint polygonal
obstacles (in our case, line segments) in the plane. Each query is a point p on the line segment and
a direction dp; it reports the point q where the ray emitted by p in direction dp hits the first obstacle
(ray shooting) and inserts the segment pq as a new obstacle (segment insertion). For an input of
n disjoint line segments, it uses O(n log n) preprocessing time, and it supports m ray shooting-and-
insertion queries in O((n + m) log2 n + m log m) total time in the real RAM model of computation.

To partition a cell C along a line `, shoot a ray along ` from one intersection point ` ∩ ∂C,
and whenever a ray hits a segment s ∈ S, shoot a new ray from the opposite side of s in the same
direction. A BSP that partitions n line segments into m fragments requires O(m) ray shooting-and-
insertion queries. We have m = O(n log n/ log log n), and so the maintenance of the data structure
requires O(n log3 n/ log log n) time. We can easily detect free segments, and perform any possible
free cuts.

The input of SubBSP(B, C, k) includes only a cell C and the set B of boundary segments with
respect to C. The fragments of a segment s ∈ S are involved in an average of O(log n/ log log n) calls
to SubBSP(B, C, k). To prove that the total runtime is O(n log3 / log log n), it is enough to show that
SubBSP(B, C, k) can be implemented in O(|B| log n) time.

Implementation of algorithm SubBSP(B, C, k) in O(|B| log n) time. Let m = |B|, and assume
w.l.o.g. that no input segment is vertical. The extensions of all boundary segments can be computed
in O(m log m) time in two line sweeps: first in a left-to-right sweep, extend every boundary segment
whose inner endpoint is the right endpoint; then in a right-to-left sweep, extend the boundary
segments whose inner endpoint is the left endpoint. Whenever two extensions meet along the sweep
line, one arbitrary extension ends and the other one continues.

It is straightforward to implement PathSelector(B,C, k) in O(m) time. We can detect the
connected components of RP in a simple traversal of R, in O(m) time. Similarly, we can decompose
the connected components R′

P ⊂ RP into non-overlapping conformal paths in Γ, and compute the
convex conformal paths γi in O(m) total time.
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The algorithm Simplify(B,C, γ) involves the segments b, which stretch from the outer endpoint
of b to the first intersection point with another boundary segment or with ∂C. The complexity of
the full arrangement of these segments may be Θ(m2). However, we can compute each of them in
O(log m) time with a standard ray shooting data structure [13, 17] for the (weakly) simple polygon
formed by C and all boundary segments in B. Once we have computed b for each b ∈ B, we can
perform Simplify(B,C, γi) for all i = 1, 2, . . . g, in O(m) total time. Finally, SubBSP(B, C, k) is a
concatenation of binary cuts along segments in the simplified paths δi, of O(m) total complexity.
Over all, we can compute SubBSP(B, C, k) in O(m log m) time.

7 Conclusion

We have shown that every set of n disjoint line segments in the plane admits a BSP and an auto-
partition of size O(n log n/ log log n). These bounds are the best possible. The height of a BSP is the
height of the recursion tree. It is an important parameter for efficient manipulation of the BSP tree
data structure. Arya [4] studied tradeoffs between the size and the height of a BSP for axis-parallel
line segments.

Our algorithm produces, for n segments, a BSP whose height may be as large as O(n) (e.g., if
there are n boundary segments, and they are all adjacent to a convex cycle ϕ). It remains an open
problem whether a BSP (or an auto-partition) BSP of size O(n log n/ log log n) and height O(log n)
exists for every set of n disjoint line segments in the plane.
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