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Abstract

For every n ∈ N, we construct an n-vertex planar graph G = (V,E), and n distinct points
p(v), v ∈ V , in the plane such that in any crossing-free straight-line drawing of G, at most
O(n.4948) vertices v ∈ V are embedded at points p(v). This improves on an earlier bound of
O(
√
n) by Goaoc et al. [10].

1 Introduction

A graph G = (V,E) is defined by a vertex set V and an edge set E ⊆
(
V
2

)
. A straight-line

drawing of a graph G = (V,E) is a mapping p : V → R2 of the vertices into distinct points in
the plane, which induces a mapping of the edges {u, v} ∈ E to line segments p(u)p(v) between
the corresponding points. A straight-line drawing is crossing-free if no two edges intersect, except
perhaps at a common endpoint. By Fáry’s theorem [9], a graph is planar if and only if it admits a
crossing-free straight-line drawing.

Suppose we are given a planar graph G = (V,E) and a straight-line drawing p : V → R2 (in
which some edges may cross each other). Since G is planar, we can obtain a crossing-free straight-
line drawing p′ : V → R2 by moving some of the vertices to new positions in the plane. The process
of changing a drawing p : V → R2 to a crossing-free drawing p′ : V → R2 is called an untangling
of (G, p). A vertex v ∈ V is fixed in the untangling if p(v) = p′(v). Denote by f(n), n ∈ N,
the maximum integer such that every straight-line drawing of every n-vertex planar graph can be
untangled while keeping at least f(n) vertices fixed. In this paper, we study the asymptotic growth
rate of f(n).

The first question on untangling planar graphs was posed by Mamoru Watanabe in 1998: Is it
true that every polygon P with n vertices can be untangled in at most εn steps, for some absolute
constant ε < 1, where in each step, we move a vertex of P to a new location? Pach and Tardos [16]
gave a negative answer to Watanabe’s question. They showed that every polygon with n vertices
(i.e., the straight-line drawing of the cycle Cn) can be untangled in at most n −

√
n moves, and

there are n-vertex polygons where no more than O((n log n)2/3) vertices can be fixed. Recently,
Cibulka [6] proved that every n-vertex polygon can be untangled such that Ω(n2/3) vertices are
fixed.

The problem of untangling planar graphs was studied by Goaoc et al. [10]. They proved f(n) ≤√
n + 2 by constructing drawings of the planar graph P2 ∗ Pn−2 with n vertices such that any
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untangling fixes at most
√
n + 2 vertices. Here Pk denotes a path with k vertices; and for two

graphs, G and H, the join G ∗ H consists of the vertex-disjoint union of G and H and all edges
between V (G) and V (H), see Fig. 1. Bose et al. [3], Kang et al. [15] and Ravsky and Verbitsky [17]
explored drawings of several families of n-vertex planar graphs in which any untangling fixes O(

√
n)

vertices. Cibulka [6] showed that every 3-connected planar graph with n vertices admits a drawing
for which any untangling fixes O((n log n)2/3) vertices.

Bose et al. [3] devised an algorithm that untangles every geometric graph with n vertices while
fixing (n/3)1/4 vertices, which proves f(n) ≥ (n/3)1/4.

In this paper, we improve the upper bound for f(n) from O(
√
n) to O(n.4948). We construct an

n-vertex planar graph G = (V,E) and arrange the vertices in the plane by an injective mapping
p : V → R2 such that any untangling of (G, p) fixes O(n2/(7−3λ)+ε) vertices for every ε > 0, where λ
is the shortness exponent of the family of 3-connected cubic planar graphs (i.e., polyhedral graphs).
The exact value of the shortness exponent λ is not known. The currently known best upper bound
is λ ≤ log23 22 ≈ 0.9858 by Grünbaum and Walther [11]. Any improvement on the upper bound
for λ would immediately improve our upper bound for f(n).

Our argument crucially depends on a correspondence between the shortness exponent of cubic
polyhedral graphs and crossing-free straight-line drawings of the dual graph in which a line stabs
many faces. We define the stabbing number stab(G) of a polyhedral graph G = (V,E) to be the
maximum number of faces that intersect a line L in any crossing-free straight-line drawing of G. We
prove that stab(G) is the size of the maximum cycle in the dual graph G∗. Previously, Biedl et al. [1]
proved a similar but weaker result for polyline drawings (rather than straight-line drawings).

Organization. In Section 2, we discuss two key ingredients of our construction: (i) the shortness
exponent of cubic polyhedral graphs, and (ii) permutations with certain special properties related to
the Erdős-Szekeres Theorem. In Section 3, we present a family of planar geometric graphs and prove
f(n) ∈ O(n2/(7−3 log23 22)+ε). We conclude in Section 4 by establishing a correspondence between
the shortness exponent of cubic polyhedral graphs and the stabbing number of triangulations.

2 Preliminaries

Dual graphs of triangulations. The value of f(n) is attained for edge-maximal planar graphs
with n vertices, since by augmenting a planar graph with new edges, the set of its crossing-free
straight-line drawings decreases or remains the same. The edge-maximal planar graphs are called
triangulations. By Euler’s formula, a triangulation with n ≥ 3 vertices has exactly 3n−6 edges and
2n− 4 faces (including the outer face). Note that in every crossing-free drawing of a triangulation,
every face (including the outer face) is bounded by three edges. It follows that every triangulation
with n ≥ 4 vertices is 3-connected [7][Lemma 4.4.5].

The 3-connected planar graphs are also called polyhedral graphs. By Whiteley’s theorem, every
polyhedral graph has a topologically unique crossing-free drawing, apart from the choice of the
outer face. More precisely, in every crossing-free drawing of a 3-connected graph G, the face
boundaries are precisely the nonseparating chordless cycles of G [7][Proposition 4.2.7]. Hence, G
has a well-defined dual graph G∗ (independent of the crossing-free drawings of G): the vertices of
G∗ correspond to the faces (i.e., nonseparating chordless cycles) of G, and two vertices of G∗ are
adjacent if and only if the corresponding faces share an edge. If G is a triangulation with n ≥ 4
vertices, then G∗ is a cubic polyhedral graph with 2n− 4 nodes and 3n− 6 edges.
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Stabbing triangulations and dual cycles. The following observation is crucial for our con-
struction.

Observation 1 Let T be a polyhedral graph. Suppose that a line L stabs the faces f1, . . . , fk (in
this order) in a crossing-free straight-line drawing of T , and these faces correspond to the vertices
f∗1 , . . . , f

∗
k , respectively, in the dual graph T ∗. Then (f∗1 , . . . , f

∗
k ) is a simple cycle in T ∗.

In Section 3, we will construct a planar graph G from two triangulations, S and T . Specifically, we
plug a copy of S in each face of T . We then draw G in the plane such that the vertices of every copy
of S lie on a line L. If the dual graph T ∗ is not Hamiltonian, then in any crossing-free straight-line
drawing of G, the line L will miss at least one face of T . If L misses a face f of T , then none of
the vertices can be fixed in the copy of S plugged into f . In the next few paragraphs, we review
the currently known best bounds on the maximum cycles in the dual graphs of triangulations.

In Section 4, we establish a somewhat surprising converse of Observation 1, and show that
if (f∗1 , . . . , f

∗
k ) is a simple cycle in the dual graph T ∗ of a polyhedral graph T , then T admits a

crossing-free straight-line drawing in which a line L stabs the corresponding faces f1, . . . , fk of T
in this order.

Maximum cycles in cubic polyhedral graphs. In an attempt at proving the Four Color
Theorem, Tait [18] conjectured in 1884 that every cubic polyhedral graph is Hamiltonian. In 1946,
Tutte [20] found a counterexample with 44 vertices. The smallest known counterexample, due to
Barnette, Bosák, and Lederberg, has 38 vertices, and it is known that there is no counterexample
with 36 or fewer vertices [12]. Using the smallest known counterexample to Tait’s conjecture, one
can build a cubic polyhedral graph with Θ(n) vertices for every n ∈ N in which every cycle has
at most O(nlog37 36) ⊂ O(n0.9925) vertices. Using similar techniques, Grünbaum and Walther [11]
constructed for every n ∈ N a cubic polyhedral graph with Θ(n) vertices in which every cycle has
at most O(nlog23 22) ⊂ O(n0.9859) vertices.

Shortness exponent. The shortness exponent of a family of graphs was introduced by Grünbaum
and Walther [11]. For a graph G, let V (G) denote the set of vertices of G and let h(G) be the
number of vertices in a longest cycle in G (also known as the circumference of G). The shortness
exponent of an infinite family G of graphs is

λ(G) = lim inf
n→∞

log h(Gn)

log |V (Gn)|
,

where (Gn)∞n=1 is the sequence of all graphs in G. This means that for every ε > 0, there are
arbitrarily large graphs G ∈ G that contain a cycle of length |V (G)|λ(G)−ε.

For example, the shortness exponent is 1 for the family of Hamiltonian graphs, and 0 for the
family of forests. The shortness exponent of cubic polyhedral graphs is not known. The currently
known best lower bound, due to Bilinski et al. [2], is λ ≥ x ≈ 0.7532, where x is the real root of
41/x− 31/x = 2. The currently known best upper bound is λ ≤ log23 22 ≈ 0.9858 due to Grünbaum
and Walther [11].

Monotone subsequences. Erdős and Szekeres [8] showed that every permutation of {1, . . . , n}
contains a monotonically increasing or decreasing subsequence of length at least d

√
ne, and this

bound is the best possible. The lower bound is attained on many different permutations. Perhaps
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the simplest construction consists of d
√
ne monotonically increasing subsequences of consecutive

elements, where the minimum element of each subsequence is larger than the maximum element
of the next. We will use a permutation where the monotone sequences are “spread out” more
evenly. In a permutation (σ1, σ2, . . . , σn), we define the spread of a subsequence (σj1 , σj2 , . . . , σjk),
1 ≤ j1 < j2 < . . . . < jk ≤ n, to be jk − j1. In other words, the spread of a subsequence is the
length of the minimum interval in [1, n] that contains all indices of the subsequence.

Lemma 1 For every m ∈ N, let n = 4m. Then there is a permutation πn of {1, . . . , n} such that

• the length of every monotone subsequence is at most 2m =
√
n, and

• for every k ≥ 2, the spread of every monotone subsequence of length k is at least k2+2
6 .

Proof. We construct the permutation πn by induction on m. For m = 1, let π4 = (3, 4, 1, 2) and
observe that it has the desired properties. Assume that πn = (σ1, . . . , σn) is a permutation of
{1, . . . , n} with the desired properties. We construct a permutation π4n of {1, . . . , 4n} by replacing
each σi with the 4-tuple

(4(σi − 1) + 3, 4(σi − 1) + 4, 4(σi − 1) + 1, 4(σi − 1) + 2).

Let τ be a monotone subsequence of length k in π4n. Note that τ has at most two elements
from each 4-tuple. The sequence of these 4-tuples corresponds to a monotone subsequence of πn,
which we denote by τ ′. By the pigeonhole principle, the length of τ ′ is at least k/2, with equality
iff τ contains exactly two elements from each of the 4-tuples involved. By induction, the length of
τ ′ is at most 2m. Hence, we have k ≤ 2m+1, as required.

For the proof of the second claim, we distinguish between three cases.

1. The length of τ ′ is exactly k/2. If k = 2, then the spread of τ is clearly at least 22+2
2 = 1.

If k/2 ≥ 2, then the spread of τ ′ is at least (k/2)2+2
6 in πn by induction. As noted above, τ

contains exactly two elements from each of the 4-tuples involved. Consequently, the spread
of τ is minimized when τ contains the last two elements of the first 4-tuple, and the first two

elements of the last 4-tuple. In this case, the spread of τ is at least 4 · (k/2)
2+2

6 − 1 = k2+2
6 .

2. The length of τ ′ is exactly (k+1)/2. In this case, k is odd and k ≥ 3. Since (k+1)/2 ≥ 2, the

spread of τ ′ is at least (k+1)2/4+2
6 by induction, and contains exactly two elements from all

but one of the 4-tuples involved. Consequently, the spread of τ is at least 4 · (k+1)2/4+2
6 − 2 =

k2+2k−3
6 > k2+2

6 .

3. The length of τ ′ is more than dk/2e. By induction, the spread of τ ′ is at least (k/2+1)2+2
6 .

The spread of τ is minimized when τ contains the last element of the first 4-tuple, and the

first element of the last 4-tuple. In this case, the spread of τ is at least 4 · (k/2+1)2+2
6 − 3 =

k2+4k−6
6 ≥ k2+2

6 .

In all three cases, the spread of τ is at least k2+2
6 , as claimed. �
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3 Upper Bound Construction

Theorem 1 For every ε > 0, we have f(n) ∈ O(n2/(7−3λ)+ε)), where λ is the shortness exponent
of the family of cubic polyhedral graphs, and the constant of proportionality depends on ε.

Proof. Fix ε > 0. Let δ ∈ (0, 1
100) be a sufficiently small constant such that

0 <
2

7− 3(λ+ δ)
≤ 2

7− 3λ
+ ε.

For every n0 ∈ N, we construct a planar graph G = (V,E) with n vertices and a straight-line
drawing p : V → R2 such that n ≥ n0 and every untangling of G fixes O(n2/(7−3λ)+ε) vertices.

u0 u1

v0

v1

v2

v3

v4

u0

u1

v0 v1

v2

v3

v4

Figure 1: Two crossing-free straight-line drawings of the triangulation S = P2 ∗ P5, where P2 = (u0, u1)
and P5 = (v0, . . . , v5).

Construction. For every n0 ∈ N, we first construct a planar graph G = (V,E) on n ≥ n0 vertices,
and then describe an embedding p : V → R2. Let κ ∈ (0, 1) be a constant to be determined later.
By the definition of the shortness exponent, there exists a cubic polyhedral graph T with m vertices
such that m ≥ nκ0 and every cycle in T has at most mλ+δ vertices. The dual graph of T is a 3-
connected triangulation T ∗ with m faces and m/2 + 2 vertices. In every crossing-free straight-line
drawing of T ∗, every line stabs at most mλ+δ triangular faces by Observation 1.

Let s ∈ N be the smallest power of 4 with s ≥ m1/κ−1. Let S be the join P2 ∗ Ps+1 of
the paths P2 = (u0, u1) and Ps+1 = (v0, . . . , vs), see Fig. 1. We construct G by combining the
triangulation T ∗ with m isomorphic copies of S, denoted S1, . . . , Sm. Specifically, label the m
faces of T ∗ by f∗1 , . . . , f

∗
m arbitrarily, and identify the vertices u1, u2, and v0 of Si with the three

vertices of f∗i (in an arbitrary order). Note that the vertices v1, . . . , vs of Si have not been identified
with any other vertices, we say that these s vertices of Si are interior vertices for i = 1, . . . ,m.
With this terminology, G has ms interior vertices, and the total number of vertices of G is n =
(m/2 + 2) +ms > ms ≥ m ·m1/κ−1 = m1/κ ≥ n0, as required.

Next, we describe a straight-line drawing of G. The 3-connected triangulation T ∗ with m/2 + 2
vertices has a straight-line drawing such that in every untangling of T at most O((m logm)2/3)
vertices are fixed [6], and all vertices lie strictly above the x-axis. Embed the interior vertices
{v1, . . . , vs} of S1 into integer points {(1, 0), . . . , (s, 0)} such that vj is mapped to (πs(j), 0), for
j = 1, . . . , s, where πs is a permutation described in Lemma 1. For i = 2, . . . ,m, embed the interior
vertices of Si into translated copies of these points, each translated along the x-axis by i−1

2m . Since
0 < i−1

2m < 1, all interior vertices of G are mapped to distinct points on the interval [1, s+ 1] of the
x-axis.
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Bounding the number of fixed vertices. Consider a crossing-free straight-line drawing of G.
This drawing induces a crossing-free drawing of the subgraph T ∗ of G. By construction, at most

O(m2/3 log2/3m) (1)

of the m/2 + 2 vertices of T ∗ are fixed. By Observation 1, the x-axis intersects at most O(mλ+δ)
faces of T ∗ in any crossing-free drawing. By Whiteley’s theorem, the s interior vertices of Si must
lie in the interior of the face f∗i of T ∗. Denote by `i the number of fixed interior vertices of Si, for
i = 1, 2, . . . ,m. If a face f∗i of T ∗ is disjoint from the x-axis, then none of the interior vertices of
Si is fixed. Therefore, all but at most O(mλ+δ) values of `i are zero.

Assume, by relabeling the copies of S if necessary, that `i > 0 for the first r + 1 values of i,
and `i = 0 for all other values of i, where r ∈ O(mλ+δ). Since T ∗ has only one unbounded face in
our straight-line drawing, we may also assume that faces f∗i , i = 1, . . . , r, are bounded (and face
f∗r+1 may be unbounded). Consider a triangulation Si with 1 ≤ i ≤ r. Then the interior vertices
of Si lie in the interior of the straight-line drawing of the triangle (u0, u1, v0) as in Fig. 1(left).
Consequently, the triangle (u0, u1, vj) contains the triangle (u0, u1, vj+1) for j = 0, . . . , s − 1. The
intersection of the x-axis with the interior of each these triangles is a line segment. First consider
the case that the x-axis does not intersect the common edge u0u1 of these nested triangles. Then
the x-axis contains at most one of the interior vertices of Si, and so `i = 1. Otherwise, the x-axis
intersects the vertices of the `i nested triangles in the order in which they are nested. Therefore at
least `i ≥ 2 fixed interior points of Si form a monotone subsequence in the permutation πs.

By Lemma 1, the spread of a monotone subsequence of length `i is at least (`2i + 2)/6 when
`i ≥ 2, and 0 when `i = 1. In both cases, the spread of a monotone subsequence of length `i is
at least (`2i − 1)/6. Consequently, the face f∗i intersects the interval [1, s + 1] of the x-axis in an
interval of length at least (`2i − 1)/6. Distinct faces of T ∗ intersect the x-axis in disjoint intervals.
We conclude that

r∑
i=1

`2i − 1

6
≤ s. (2)

Recall that r ∈ O(mλ+δ). By the inequality between arithmetic and harmonic means, the sum∑r
i=1 `i is maximal when all nonzero values of `i are equal. In this case, Inequality (2) becomes

r(`2−1) ∈ O(m1/κ−1), that is, ` ∈ O(m(1/κ−λ−δ−1)/2). Therefore, the total number of fixed interior
vertices of Si, for i = 1, 2, . . . ,m, is

m∑
i=1

`i =
r+1∑
i=1

`i ≤ r`+ s ∈ O(m(1/κ+λ+δ−1)/2 +m1/κ−1). (3)

We choose the constant κ such that

m(1/κ+λ+δ−1)/2 = m2/3

1/κ+ λ+ δ − 1

2
=

2

3

κ =
3

7− 3(λ+ δ)
.

Since 0.7432 ≤ λ ≤ 0.9857 and 0 < δ < 0.01, we have 0.62 < κ < 0.75 and 1/κ − 1 < 2/3.
Substituting this value of κ into (3), we obtain

m∑
i=1

`i ∈ O(m(1/κ+λ+δ−1)/2 +m1/κ−1) ⊆ O(m2/3). (4)
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From (1), the number of fixed vertices in the triangulation T ∗ is at most O(m2/3 log2/3m) =
O(n2κ/3 log2/3 n) = O(n2/(7−3(λ+δ)) log2/3 n) ⊂ O(n2/(7−3λ)+ε). From (4), the number of fixed
interior vertices is bounded by O(m(1/κ+λ+δ−1)/2) = O(m2/3) ⊂ O(n2/(7−3λ)+ε). We conclude that
the total number of fixed vertices in any untangling of G is O(n2/(7−3λ)+ε), as required. �

Combining Theorem 1 with the upper bound λ ≤ log23 22 by Grünbaum and Walther [11], we
obtain the following.

Corollary 1 For every ε > 0, we have f(n) ∈ O(n2/(7−3 log23 22)−ε)) ⊂ O(n.4948), where the con-
stant of proportionality depends on ε.

4 Stabbing number of triangulations

In this section, we prove the converse of Observation 1: If T is a polyhedral graph and (f∗1 , . . . , f
∗
k )

is a simple cycle in the dual graph T ∗, then T admits a crossing-free straight-line drawing where
some line stabs the faces f1, . . . , fk in this order. We construct the straight-line drawing of T
incrementally, based on Lemmas 2 and 3 below.

Recall that a near-triangulation is a 2-connected planar graph such that all faces are triangles
with the possible exception of one face, which is considered to be the outer face. For example, every
triangulation is a near-triangulation, where the outer face is also a triangle. Tutte [19] proved that
every near-triangulation has a crossing-free straight-line drawing such that the vertices of the outer
face are mapped to the vertices of an arbitrary convex polygon. This was extended by Hong and
Nagamochi [13] to arbitrary star-shaped polygons (Lemma 2 below). A star-shaped polygon P is
defined in terms of visibility. Let P be a closed polygonal domain (for short, polygon) bounded by
a simple cycle. Two points, p and q, are mutually visible with respect to P if the line segment pq
lies in P . The kernel of P , denoted ker(P ), is the set of all points in P from which all vertices of
P are visible. A polygon is star-shaped if it has a non-empty kernel.

Lemma 2 (Hong and Nagamochi [13]) Let G be a polyhedral graph where the outer face is bounded
by a cycle with t vertices (v1, . . . , vt). Let (p1, . . . , pt) be a star-shaped polygon with t vertices. Then
G has a crossing-free straight-line drawing p : V → R2 such that p(vi) = pi for i = 1, . . . , t.

If T is a polyhedral graph embedded in the plane, then a simple cycle C∗(f∗1 , . . . , f
∗
k ) of the

dual graph can be represented by a simple closed curve γ = γ(C∗) that visits the corresponding
faces f1, . . . , fk of T in this order. For an inductive argument, it is convenient to work with such a
closed curve γ in an arbitrary crossing-free drawing of T .

Lemma 3 Let T = (V,E) be a 3-connected near-triangulation, and let p : V → R2 be a crossing-
free straight-line drawing of T such that the outer face is (v1, . . . , vt). Let γ be a closed Jordan
curve that does not pass through any vertex of T and crosses k distinct edges (e1, . . . , ek) in this
order, where exactly two of these edges are on the boundary of the outer face, say, e1 = v1v2 and
ek = vτvτ+1 with 2 ≤ τ < t. Let P = (p1, p2, . . . , pt) be a star-shaped simple polygon such that there
is a line L that intersects the interior of ker(P ) and crosses sides p1p2 and pτpτ+1 (but no other
side of P ).

Then T has a crossing-free straight-line drawing p′ : V → R2 such that p′(vi) = pi for i =
1, 2, . . . , t, and the edges crossed by the line L are e1, . . . ek in this order.
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Proof. We proceed by induction on k, the number of edges crossed by γ. Assume that k ≥ 3, and
Lemma 3 holds for every k′ satisfying 3 ≤ k′ < k.

1
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Figure 2: Left: a near-triangulation T , curve γ is a closed Jordan curve corresponding to a simple cycle
in the dual graph T ∗. Middle: A star-shaped polygon P with a shaded kernel ker(P ). Vertex w = v9
is embedded at a small neighborhood of a point x ∈ L ∩ int(ker(P )). Right: we apply induction in each
bounded face of Tw.

Refer to Fig. 2. Edges e1 = v1v2 and e2 are two sides of a triangle f2, and so they have a
common endpoint. Assume without loss of generality that e2 = v2w, with w 6= v1. Denote by Tw
the subgraph of T induced by the vertex set {v1, v2, . . . , vt, w}. Since T is 3-connected, Tw consists
of the chordless cycle (v1, v2, . . . , vt), and a star between w and some vertices of {v1, v2, . . . , vt}
(including the edges v1w and v2w). All bounded faces of Tw are incident to w, and they are each
bounded by chordless cycles. For every bounded face F of Tw, the subgraph T (F ) of T induced by
the vertices on the boundary and inside F is a 3-connected near-triangulation. Indeed, suppose to
the contrary that a graph T (F ) has a 2-vertex cut {a, b}. Since T is 3-connected, the the deletion
of {a, b} disconnects the outer face of T (F ). Hence both a and b are incident to the outer face and
some common interior face of T (F ). However, the interior faces of T (F ) are triangles, and so ab is
a chord of the outer face of T (F ), contradicting the fact that this outer face is a chordless cycle.

We are now ready to construct a crossing-free straight-line drawing p′. First, embed the vertices
of Tw as follows. Let x be an intersection point of L and the interior of ker(P ), and note that a
small neighborhood of x is contained in ker(P ). Let p′(vi) = pi for i = 1, . . . , t, and let p′(w) be a
point sufficiently close to x on the side of line L that does not contain p2. If w is sufficiently close
to x, then all bounded faces of Tw are star-shaped, and whenever L crosses a bounded face of Tw,
it also intersects the kernel of that face.

Note that γ crosses exactly two edges of the outer cycle (v1, . . . , vt), and so it partitions the
vertices {v1, . . . , vt} into two classes lying in the interior and exterior of γ, respectively. This ensures
that γ and L partitions the vertices of Tw in the same two classes. Since γ crosses every edge at
most once, it crosses an edge of Tw if and only if the edge connects vertices on opposite sides of γ.
Analogously, L crosses an edge of Tw if and only if the edge connects vertices on opposite sides of
L. Hence γ and L cross the same edges of Tw incident to w, moreover both cross these edges in
the same order determined by the circular order of all edges incident to w. Consequently, γ and L
also intersects the same faces of Tw, in the same order.

For each bounded face F of Tw, we can recurse on the subgraphs T (F ) induced by the vertices
on the boundary and inside F . Specifically, if γ traverses a bounded face F of Tw, we can apply
the induction hypothesis, otherwise we can embed the interior vertices of T (F ) using Lemma 2. �
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We are now ready to prove the converse of Observation 1.

Theorem 2 Let T = (V,E) be a polyhedral graph on n ≥ 4 vertices, C∗ = (f∗1 , . . . , f
∗
k ) a simple

cycle in the dual graph T ∗, and L a line in the plane. Then T admits a crossing-free straight-line
drawing such that f1 is the outer face, and L intersects f1, . . . , fk in this order.

Proof. We are given a polyhedral graph T = (V,E) and a simple cycle C∗ = (f∗1 , . . . , f
∗
k ) in the

dual graph T ∗. Consider an arbitrary crossing-free straight-line drawing p : V → R2 of T such
that the outer face is f1. Let γ be a closed Jordan curve that corresponds to the simple cycle
C∗ = (f∗1 , . . . , f

∗
k ), that is, γ traverses faces f1, . . . , fk in this order in the drawing p. Augment T

with dummy edges to a near-triangulation T ′ by triangulating all bounded faces if necessary. We
may assume that γ traverses every triangular face at most once. Denote the sequence of edges of
T ′ crossed by γ by e1, . . . , ek′ , where e1 and ek′ are adjacent to the outer face. If face f1 has t
vertices then let P = (v1, . . . , vt) be an arbitrary convex polygon with t vertices. By Lemma 3, T ′

has a crossing-free straight-line drawing such that the outer face is f1 and a line L crosses the edges
e1, . . . , ek′ in this order. After deleting the dummy edges, we obtain a crossing-free straight-line
drawing of T such that the outer face is f1 and the line L stabs the faces f1, . . . , fk in this order,
as required. �

Biedl et al. [1] showed that the ratio between the longest and the shortest edges in the resulting
crossing-free straight-line drawing is at least Ω(2n/2) for some planar graphs with n vertices.

Acknowledgement. We are grateful to Alexander Ravsky and Oleg Verbitsky for directing us
to the currently known best upper bounds for the shortness exponent of cubic polyhedral graphs.
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